I'm working on a game where on each update of the game loop, the AI is run. During this update, I have the chance to turn the AI-controlled entity and/or make it accelerate in the direction it is facing. I want it to reach a final location (within reasonable range) and at that location have a specific velocity and direction (again it doesn't need to be exact) That is, given a current:
Select an immediate:
Such that these are minimized:
The parameters can be re-computed during each iteration of the game loop. A picture says 1000 words so for example given the current state as the blue dude, reach approximately the state of the red dude within as short a time as possible (arrows are velocity):
Pic http://public.blu.livefilestore.com/y1p6zWlGWeATDQCM80G6gaDaX43BUik0DbFukbwE9I4rMk8axYpKwVS5-43rbwG9aZQmttJXd68NDAtYpYL6ugQXg/words.gif
Assuming a constant α and τ for Δt (Δt → 0 for an ideal solution) and splitting position/velocity into components, this gives (I think, my math is probably off):
Equations http://public.blu.livefilestore.com/y1p6zWlGWeATDTF9DZsTdHiio4dAKGrvSzg904W9cOeaeLpAE3MJzGZFokcZ-ZY21d0RGQ7VTxHIS88uC8-iDAV7g/equations.gif
(EDIT: that last one should be θ = θ0 + τΔt)
So, how do I select an immediate α and τ (remember these will be recomputed every iteration of the game loop, usually > 100 fps)? The simplest, most naieve way I can think of is:
Its potentially fast & simple, however, there are a few glaring problems with this:
Note that while the algorithm can (and probably should) save state between iterations, but Pf, Vf and θf can change every iteration (i.e. if the entity is trying to follow/position itself near another), so the algorithm needs to be able to adapt to changing conditions.
Any ideas? Is there a simple solution for this I'm missing?
Thanks, Robert
sounds like you want a PD controller. Basically draw a line from the current position to the target. Then take the line direction in radians, that's your target radians. The current error in radians is current heading - line heading. Call it Eh. (heading error) then you say the current turn rate is going to be KpEh+d/dt EhKd. do this every step with a new line.
thats for heading
acceleration is "Accelerate until I've reached max speed or I wont be able to stop in time". you threw up a bunch of integrals so I'm sure you'll be fine with that calculation.
I case you're wondering, yes I've solved this problem before, PD controller works. don't bother with PID, don't need it in this case. Prototype in matlab. There is one thing I've left out, you need to have a trigger, like "i'm getting really close now" so I should start turning to get into the target. I just read your clarification about "only accelerating in the direction we're heading". that changes things a bit but not too much. that means to need to approach the target "from behind" meaning that the line target will have to be behind the real target, when you get near the behind target, follow a new line that will guide you to the real target. You'll also want to follow the lines, rather than just pick a heading and try to stick with it. So don't update the line each frame, just say the error is equal to the SIGNED DISTANCE FROM THE CURRENT TARGET LINE. The PD will give you a turn rate, acceleration is trivial, so you're set. you'll need to tweak Kd and Kp by head, that's why i said matlab first. (Octave is good too)
good luck, hope this points you in the right direction ;)
pun intended.
EDIT: I just read that...lots of stuff, wrote real quick. this is a line following solution to your problem, just google line following to accompany this answer if you want to take this solution as a basis to solving the problem.
I would like to suggest that yout consider http://en.wikipedia.org/wiki/Bang%E2%80%93bang_control (Bang-bang control) as well as a PID or PD. The things you are trying to minimise don't seem to produce any penalty for pushing the accelerator down as far as it will go, until it comes time to push the brake down as far as it will go, except for your point about how jerky this will look. At the very least, this provides some sort of justification for your initial guess.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With