I want to groupby aggregate a pyspark dataframe, while removing duplicates (keep last value) based on another column of this dataframe.
In summary, I would like to apply a dropDuplicates to a GroupedData object. So, for each group, I could keep only one row by some column, dynamically.
The straight forward group aggregation, for the dataframe bellow, would be:
from pyspark.sql import functions
dataframe = spark.createDataFrame(
[
(1, "2020-01-01", 1, 1),
(2, "2020-01-01", 2, 1),
(3, "2020-01-02", 1, 1),
(2, "2020-01-02", 1, 1)
],
("id", "ts", "feature", "h3")
).withColumn("ts", functions.col("ts").cast("timestamp"))
# +---+-------------------+-------+---+
# | id| ts|feature| h3|
# +---+-------------------+-------+---+
# | 1|2020-01-01 00:00:00| 1| 1|
# | 2|2020-01-01 00:00:00| 2| 1|
# | 3|2020-01-02 00:00:00| 1| 1|
# | 2|2020-01-02 00:00:00| 1| 1|
# +---+-------------------+-------+---+
aggregated = dataframe.groupby("h3",
functions.window(
timeColumn="ts",
windowDuration="3 days",
slideDuration="1 day",
)
).agg(
functions.sum("feature")
)
aggregated.show(truncate=False)
resulting in the following dataframe:
+---+------------------------------------------+------------+
|h3 |window |sum(feature)|
+---+------------------------------------------+------------+
|1 |[2019-12-30 00:00:00, 2020-01-02 00:00:00]|3 |
|1 |[2019-12-31 00:00:00, 2020-01-03 00:00:00]|5 |
|1 |[2020-01-01 00:00:00, 2020-01-04 00:00:00]|5 |
|1 |[2020-01-02 00:00:00, 2020-01-05 00:00:00]|2 |
+---+------------------------------------------+------------+
I want the aggregation to use only the latest state of each id
. In this case, id=2
have been updated to feature=1
at ts=2020-01-02 00:00:00
, so all aggregations with base timestamp bigger than 2020-01-02 00:00:00
should use only this state for column feature when id=2
. The expected aggregated dataframe is:
+---+------------------------------------------+------------+
|h3 |window |sum(feature)|
+---+------------------------------------------+------------+
|1 |[2019-12-30 00:00:00, 2020-01-02 00:00:00]|3 |
|1 |[2019-12-31 00:00:00, 2020-01-03 00:00:00]|3 |
|1 |[2020-01-01 00:00:00, 2020-01-04 00:00:00]|3 |
|1 |[2020-01-02 00:00:00, 2020-01-05 00:00:00]|2 |
+---+------------------------------------------+------------+
How can I do this with pyspark?
I have assumed that a MapType variable should not have duplicate keys in Spark. With that assumption, I thought I could aggregate the column creating a map id -> feature
and then just aggregate the map values with sum (or whatever the final aggregation should be).
So I did:
aggregated = dataframe.groupby("h3",
functions.window(
timeColumn="ts",
windowDuration="3 days",
slideDuration="1 day",
)
).agg(
functions.map_from_entries(
functions.collect_list(
functions.struct("id","feature")
)
).alias("id_feature")
)
aggregated.show(truncate=False)
But then I've found that maps can have duplicate keys:
+---+------------------------------------------+--------------------------------+
|h3 |window |id_feature |
+---+------------------------------------------+--------------------------------+
|1 |[2020-01-01 00:00:00, 2020-01-04 00:00:00]|[1 -> 1, 2 -> 2, 3 -> 1, 2 -> 1]|
|1 |[2019-12-31 00:00:00, 2020-01-03 00:00:00]|[1 -> 1, 2 -> 2, 3 -> 1, 2 -> 1]|
|1 |[2019-12-30 00:00:00, 2020-01-02 00:00:00]|[1 -> 1, 2 -> 2] |
|1 |[2020-01-02 00:00:00, 2020-01-05 00:00:00]|[3 -> 1, 2 -> 1] |
+---+------------------------------------------+--------------------------------+
so it doesn't solve my problem. Instead, I just found another problem. When using the display function in a Databricks' notebook, it shows the MapType column without duplicated keys.
First, you can find the latest record for each id and time window and then join with the original dataframe with the latest records.
time_window = window(timeColumn="ts", windowDuration="3 days", slideDuration="1 day")
df2 = df.groupBy("h3", time_window, "id").agg(max("ts").alias("latest"))
df2.alias("a").join(df.alias("b"), (col("a.id") == col("b.id")) & (col("a.latest") == col("b.ts")), "left") \
.select("a.*", "feature") \
.groupBy("h3", "window") \
.agg(sum("feature")) \
.orderBy("window") \
.show(truncate=False)
Then, the result is the same as your expected one.
+---+------------------------------------------+------------+
|h3 |window |sum(feature)|
+---+------------------------------------------+------------+
|1 |[2019-12-29 00:00:00, 2020-01-01 00:00:00]|3 |
|1 |[2019-12-30 00:00:00, 2020-01-02 00:00:00]|3 |
|1 |[2019-12-31 00:00:00, 2020-01-03 00:00:00]|3 |
|1 |[2020-01-01 00:00:00, 2020-01-04 00:00:00]|2 |
+---+------------------------------------------+------------+
Since you are using Spark 2.4+, one way you can try is to use Spark SQL aggregate function, see below:
aggregated = dataframe.groupby("h3",
functions.window(
timeColumn="ts",
windowDuration="3 days",
slideDuration="1 day",
)
).agg(
functions.sort_array(functions.collect_list(
functions.struct("ts", "id", "feature")
), False).alias("id_feature")
)
I added ts
field into the resulting array of structs from functions.collect_list. use functions.sort_array to sort the list by ts
in descending order(to keep the latest record if duplicate exists). In the following aggregate function, we set the zero_value using a named_struct containing two fields: ids (MapType) to cache all processed id and total to do the sum only when the new id not exist in the cached ids
.
aggregated.selectExpr("h3", "window", """
aggregate(
id_feature,
/* zero_value */
(map() as ids, 0L as total),
/* merge */
(acc, y) -> named_struct(
/* add y.id into the ids map */
'ids', map_concat(acc.ids, map(y.id,1)),
/* sum to total only when y.id doesn't exist in acc.ids map */
'total', acc.total + IF(acc.ids[y.id] is null,y.feature,0)
),
/* finish, take only acc.total, discard acc.ids map */
acc -> acc.total
) as id_features
""").show()
+---+--------------------+----------+
| h3| window|id_feature|
+---+--------------------+----------+
| 1|[2020-01-01 00:00...| 3|
| 1|[2019-12-31 00:00...| 3|
| 1|[2019-12-30 00:00...| 3|
| 1|[2020-01-02 00:00...| 2|
+---+--------------------+----------+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With