I went into countless threads (1 2 3...) and still I don't find a solution to my problem... I have a dataframe like this:
prop1 prop2 prop3 prop4
L30 3 bob 11.2
L30 54 bob 10
L30 11 john 10
L30 10 bob 10
K20 12 travis 10
K20 1 travis 4
K20 66 leo 10
I would like to do a groupby on prop1, AND at the same time, get all the other columns aggregated, but only with unique values. Like that:
prop1 prop2 prop3 prop4
L30 3,54,11,10 bob,john 11.2,10
K20 12,1,66 travis,leo 10,4
I tried with different methods:
df.groupby('prop1')['prop2','prop3','prop4'].apply(np.unique)
returns AttributeError: 'numpy.ndarray' object has no attribute 'index' PLUS TypeError: Series.name must be a hashable type
Also: .apply(lambda x: pd.unique(x.values.ravel()).tolist())
which gives a list as output, and I would like columns.
df.groupby('prop1')['prop2','prop3','prop4'].unique()
by itself doesn't work because there are multiple columns.
.apply(f)
with f being:
def f(df):
df['prop2']=df['prop2'].drop_duplicates()
df['prop3']=df['prop3'].drop_duplicates()
df['prop4']=df['prop4'].drop_duplicates()
return df
doesn't do anything.
.agg()
with different options but didn't get success.Does one of you would have any idea?
Thank you very much :)
Use groupby
and agg
, and aggregate only unique values by calling Series.unique
:
df.astype(str).groupby('prop1').agg(lambda x: ','.join(x.unique()))
prop2 prop3 prop4
prop1
K20 12,1,66 travis,leo 10.0,4.0
L30 3,54,11,10 bob,john 11.2,10.0
df.astype(str).groupby('prop1', sort=False).agg(lambda x: ','.join(x.unique()))
prop2 prop3 prop4
prop1
L30 3,54,11,10 bob,john 11.2,10.0
K20 12,1,66 travis,leo 10.0,4.0
If handling NaNs is important, call fillna
in advance:
import re
df.fillna('').astype(str).groupby('prop1').agg(
lambda x: re.sub(',+', ',', ','.join(x.unique()))
)
prop2 prop3 prop4
prop1
K20 12,1,66 travis,leo 10.0,4.0
L30 3,54,11,10 bob,john 11.2,10.0
melt
+ pivot_table
s = df.astype(str).melt(id_vars='prop1').drop_duplicates()
s.pivot_table(
index='prop1',
columns='variable',
values='value',
aggfunc=','.join)
variable prop2 prop3 prop4
prop1
K20 12,1,66 travis,leo 10.0,4.0
L30 3,54,11,10 bob,john 11.2,10.0
Try this, it worked for me perfectly:
df.groupby(['prop1','prop2', 'prop4']).agg(lambda x: ','.join(x.unique())).reset_index()
This will give the result as:
prop1 prop2 prop3 prop4
L30 3,54,11,10 bob,john 11.2,10
K20 12,1,66 travis,leo 10,4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With