I would like to aggregate a Spark data frame using an array of column names as input, and at the same time retain the original names of the columns.
df.groupBy($"id").sum(colNames:_*)
This works but fails to preserve the names. Inspired by the answer found here I unsucessfully tried this:
df.groupBy($"id").agg(sum(colNames:_*).alias(colNames:_*))
error: no `: _*' annotation allowed here
It works to take a single element like
df.groupBy($"id").agg(sum(colNames(2)).alias(colNames(2)))
How can make this happen for the entire array?
Just provide an sequence of columns with aliases:
val colNames: Seq[String] = ???
val exprs = colNames.map(c => sum(c).alias(c))
df.groupBy($"id").agg(exprs.head, exprs.tail: _*)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With