Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Adding regularizer to an existing layer of a trained model without resetting weights?

Let's say I'm transfer learning via Inception. I add a few layers and train it for a while.

Here is what my model topology looks like:

base_model = InceptionV3(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu', name = 'Dense_1')(x)
predictions = Dense(12, activation='softmax', name = 'Predictions')(x)
model = Model(input=base_model.input, output=predictions)

I train this model for a while, save it and load it again for retraining; this time I want to add l2-regularizer to the Dense_1 without resetting the weights? Is this possible?

path = .\model.hdf5
from keras.models import load_model
model = load_model(path)

The docs show only show the that regularizer can be added as parameter when you initialize a layer:

from keras import regularizers
model.add(Dense(64, input_dim=64,
                kernel_regularizer=regularizers.l2(0.01),
                activity_regularizer=regularizers.l1(0.01)))

This is essentially creating a new layer, so my layer's weights would be resetted.

EDIT:

So I'm playing around with the code the past couple of days, and something strange is happening with my loss when I load the model (after training a bit with the new regularizer).

So the first time I run this code (first time with new regularizer):

from keras.models import load_model
base_model = load_model(path)
x = base_model.get_layer('dense_1').output
predictions = base_model.get_layer('dense_2')(x)
model = Model(inputs = base_model.input, output = predictions)
model.get_layer('dense_1').kernel_regularizer = regularizers.l2(0.02) 

model.compile(optimizer=SGD(lr= .0001, momentum=0.90),
              loss='categorical_crossentropy',
              metrics = ['accuracy'])

My training output seems to be normal:

Epoch 43/50
 - 2918s - loss: 0.3834 - acc: 0.8861 - val_loss: 0.4253 - val_acc: 0.8723
Epoch 44/50
Epoch 00044: saving model to E:\Keras Models\testing_3\2018-01-18_44.hdf5
 - 2692s - loss: 0.3781 - acc: 0.8869 - val_loss: 0.4217 - val_acc: 0.8729
Epoch 45/50
 - 2690s - loss: 0.3724 - acc: 0.8884 - val_loss: 0.4169 - val_acc: 0.8748
Epoch 46/50
Epoch 00046: saving model to E:\Keras Models\testing_3\2018-01-18_46.hdf5
 - 2684s - loss: 0.3688 - acc: 0.8896 - val_loss: 0.4137 - val_acc: 0.8748
Epoch 47/50
 - 2665s - loss: 0.3626 - acc: 0.8908 - val_loss: 0.4097 - val_acc: 0.8763
Epoch 48/50
Epoch 00048: saving model to E:\Keras Models\testing_3\2018-01-18_48.hdf5
 - 2681s - loss: 0.3586 - acc: 0.8924 - val_loss: 0.4069 - val_acc: 0.8767
Epoch 49/50
 - 2679s - loss: 0.3549 - acc: 0.8930 - val_loss: 0.4031 - val_acc: 0.8776
Epoch 50/50
Epoch 00050: saving model to E:\Keras Models\testing_3\2018-01-18_50.hdf5
 - 2680s - loss: 0.3493 - acc: 0.8950 - val_loss: 0.4004 - val_acc: 0.8787

However, if I try to load the model after this mini-training session(I will load the model from epoch 00050, so new regularizer value should be already implemented, I get a really high loss value)

Code:

path = r'E:\Keras Models\testing_3\2018-01-18_50.hdf5' #50th epoch model

from keras.models import load_model
model = load_model(path)
model.compile(optimizer=SGD(lr= .0001, momentum=0.90),
              loss='categorical_crossentropy',
              metrics = ['accuracy'])

return:

Epoch 51/65
 - 3130s - loss: 14.0017 - acc: 0.8953 - val_loss: 13.9529 - val_acc: 0.8800
Epoch 52/65
Epoch 00052: saving model to E:\Keras Models\testing_3\2018-01-20_52.hdf5
 - 2813s - loss: 13.8017 - acc: 0.8969 - val_loss: 13.7553 - val_acc: 0.8812
Epoch 53/65
 - 2759s - loss: 13.6070 - acc: 0.8977 - val_loss: 13.5609 - val_acc: 0.8824
Epoch 54/65
Epoch 00054: saving model to E:\Keras Models\testing_3\2018-01-20_54.hdf5
 - 2748s - loss: 13.4115 - acc: 0.8992 - val_loss: 13.3697 - val_acc: 0.8824
Epoch 55/65
 - 2745s - loss: 13.2217 - acc: 0.9006 - val_loss: 13.1807 - val_acc: 0.8840
Epoch 56/65
Epoch 00056: saving model to E:\Keras Models\testing_3\2018-01-20_56.hdf5
 - 2752s - loss: 13.0335 - acc: 0.9014 - val_loss: 12.9951 - val_acc: 0.8840
Epoch 57/65
 - 2756s - loss: 12.8490 - acc: 0.9023 - val_loss: 12.8118 - val_acc: 0.8849
Epoch 58/65
Epoch 00058: saving model to E:\Keras Models\testing_3\2018-01-20_58.hdf5
 - 2749s - loss: 12.6671 - acc: 0.9032 - val_loss: 12.6308 - val_acc: 0.8849
Epoch 59/65
 - 2738s - loss: 12.4871 - acc: 0.9039 - val_loss: 12.4537 - val_acc: 0.8855
Epoch 60/65
Epoch 00060: saving model to E:\Keras Models\testing_3\2018-01-20_60.hdf5
 - 2765s - loss: 12.3086 - acc: 0.9059 - val_loss: 12.2778 - val_acc: 0.8868
Epoch 61/65
 - 2767s - loss: 12.1353 - acc: 0.9065 - val_loss: 12.1055 - val_acc: 0.8867
Epoch 62/65
Epoch 00062: saving model to E:\Keras Models\testing_3\2018-01-20_62.hdf5
 - 2757s - loss: 11.9637 - acc: 0.9061 - val_loss: 11.9351 - val_acc: 0.8883

Notice the really high loss values. Is this normal? I understand the l2 regularizer would bring the loss up (if there large weights), but wouldn't that be reflected in the first mini-training session (where I first implemented the regularizer?). The accuracy seems to stay consistent though.

Thank you.

like image 507
Moondra Avatar asked Jan 18 '18 20:01

Moondra


People also ask

How do you add regularization in keras dense?

Next, we implement a simple model using the Keras Sequential API. The hidden layers in our model have a variety of regularization techniques used. To add a regularizer to a layer, you simply have to pass in the prefered regularization technique to the layer's keyword argument 'kernel_regularizer'.


2 Answers

For tensorflow 2.X you just need to do that:

l2 = tf.keras.regularizers.l2(1e-4)
for layer in model.layers:
    # if hasattr(layer, 'kernel'):
    # or
    # If you want to apply just on Conv
    if isinstance(layer, tf.keras.layers.Conv2D):
        model.add_loss(lambda layer=layer: l2(layer.kernel))

Hope it will help

like image 166
Emilien Garreau Avatar answered Sep 22 '22 02:09

Emilien Garreau


Try this:

# a utility function to add weight decay after the model is defined.
def add_weight_decay(model, weight_decay):
    if (weight_decay is None) or (weight_decay == 0.0):
        return

    # recursion inside the model
    def add_decay_loss(m, factor):
        if isinstance(m, tf.keras.Model):
            for layer in m.layers:
                add_decay_loss(layer, factor)
        else:
            for param in m.trainable_weights:
                with tf.keras.backend.name_scope('weight_regularizer'):
                    regularizer = lambda: tf.keras.regularizers.l2(factor)(param)
                    m.add_loss(regularizer)

    # weight decay and l2 regularization differs by a factor of 2
    add_decay_loss(model, weight_decay/2.0)
    return
like image 41
mathmanu Avatar answered Sep 18 '22 02:09

mathmanu