I am trying to add column headers to csv file that I have parsed into a dataframe withing Pandas.
dfTrades = pd.read_csv('pnl1.txt',delim_whitespace=True,header=None,);
dfTrades = dfTrades.drop(dfTrades.columns[[3,4,6,8,10,11,13,15,17,18,25,27,29,32]], axis=1) # Note: zero indexed
dfTrades = dfTrades.set_index([dfTrades.index]);
df = pd.DataFrame(dfTrades,columns=['TradeDate',
'TradeTime',
'CumPnL',
'DailyCumPnL',
'RealisedPnL',
'UnRealisedPnL',
'CCYCCY',
'CCYCCYPnLDaily',
'Position',
'CandleOpen',
'CandleHigh',
'CandleLow',
'CandleClose',
'CandleDir',
'CandleDirSwings',
'TradeAmount',
'Rate',
'PnL/Trade',
'Venue',
'OrderType',
'OrderID'
'Code']);
print df
The structure of the data is:
01/10/2015 05:47.3 190 190 -648 838 EURNOK -648 0 0 611 -1137 -648 H 2 -1000000 9.465 -648 INTERNAL IOC 287 AS
What Pandas returns is:
TradeDate TradeTime CumPnL DailyCumPnL RealisedPnL UnRealisedPnL \
0 NaN NaN NaN NaN NaN NaN ...
I would appreciate any advice on the issue.
Thanks
Ps. Thanks to Ed for his answer. I have tried your suggestion with
df = dfTrades.columns=['TradeDate',
'TradeTime',
'CumPnL',
'DailyCumPnL',
'RealisedPnL',
'UnRealisedPnL',
'CCYCCY',
'CCYCCYPnLDaily',
'Position',
'CandleOpen',
'CandleHigh',
'CandleLow',
'CandleClose',
'CandleDir',
'CandleDirSwings',
'TradeAmount',
'Rate',
'PnL/Trade',
'Venue',
'OrderType',
'OrderID'
'Code'];
But now the problem has morphed to:
ValueError: Length mismatch: Expected axis has 22 elements, new values have 21 elements
I have taken the shape of the matrix and got: dfTrades.shape
(12056, 22)
So sadly i still need some help :(
Assign directly to the columns:
df.columns = ['TradeDate',
'TradeTime',
'CumPnL',
'DailyCumPnL',
'RealisedPnL',
'UnRealisedPnL',
'CCYCCY',
'CCYCCYPnLDaily',
'Position',
'CandleOpen',
'CandleHigh',
'CandleLow',
'CandleClose',
'CandleDir',
'CandleDirSwings',
'TradeAmount',
'Rate',
'PnL/Trade',
'Venue',
'OrderType',
'OrderID'
'Code']
What you're doing is reindexing and because the columns don't agree get all NaN
s as you're passing the df as the data it will align on existing column names and index values.
You can see the same semantic behaviour here:
In [240]:
df = pd.DataFrame(data= np.random.randn(5,3), columns = np.arange(3))
df
Out[240]:
0 1 2
0 1.037216 0.761995 0.153047
1 -0.602141 -0.114032 -0.323872
2 -1.188986 0.594895 -0.733236
3 0.556196 0.363965 -0.893846
4 0.547791 -0.378287 -1.171706
In [242]:
df1 = pd.DataFrame(df, columns = list('abc'))
df1
Out[242]:
a b c
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
Alternatively you can pass the np array as the data:
df = pd.DataFrame(dfTrades.values,columns=['TradeDate',
In [244]:
df1 = pd.DataFrame(df.values, columns = list('abc'))
df1
Out[244]:
a b c
0 1.037216 0.761995 0.153047
1 -0.602141 -0.114032 -0.323872
2 -1.188986 0.594895 -0.733236
3 0.556196 0.363965 -0.893846
4 0.547791 -0.378287 -1.171706
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With