I am creating a new pandas dataframe from a previous dataframe using the .groupby and .size methods.
[in] results = df.groupby(["X", "Y", "Z", "F"]).size()
[out]
9 27/02/2016 1 N 326
9 27/02/2016 1 S 332
9 27/02/2016 2 N 280
9 27/02/2016 2 S 353
9 27/02/2016 3 N 177
This behaves as expected, however the result is a dataframe with no column headers.
This SO question states that the following adds column names to the generated dataframe
[in] results.columns = ["X","Y","Z","F","Count"]
However, this does not seem to have any impact at all.
[out]
9 27/02/2016 1 N 326
9 27/02/2016 1 S 332
9 27/02/2016 2 N 280
9 27/02/2016 2 S 353
9 27/02/2016 3 N 177
What you're seeing are your grouped columns as the index, if you call reset_index then it restores the column names
so
results = df.groupby(["X", "Y", "Z", "F"]).size()
results.reset_index()
should work
In [11]:
df.groupby(["X","Y","Z","F"]).size()
Out[11]:
X Y Z F
9 27/02/2016 1 N 1
S 1
2 N 1
S 1
3 N 1
dtype: int64
In [12]:
df.groupby(["X","Y","Z","F"]).size().reset_index()
Out[12]:
X Y Z F 0
0 9 27/02/2016 1 N 1
1 9 27/02/2016 1 S 1
2 9 27/02/2016 2 N 1
3 9 27/02/2016 2 S 1
4 9 27/02/2016 3 N 1
Additionally you can achieve what you want by using count:
In [13]:
df.groupby(["X","Y","Z","F"]).count().reset_index()
Out[13]:
X Y Z F Count
0 9 27/02/2016 1 N 1
1 9 27/02/2016 1 S 1
2 9 27/02/2016 2 N 1
3 9 27/02/2016 2 S 1
4 9 27/02/2016 3 N 1
You could also pass param as_index=False here:
In [15]:
df.groupby(["X","Y","Z","F"], as_index=False).count()
Out[15]:
X Y Z F Count
0 9 27/02/2016 1 N 1
1 9 27/02/2016 1 S 1
2 9 27/02/2016 2 N 1
3 9 27/02/2016 2 S 1
4 9 27/02/2016 3 N 1
This is normally fine but some aggregate functions will bork if you try to use aggregation methods on columns whose dtypes cannot be aggregated, for instance if you have str dtypes and you decide to call mean for instance.
you can use as_index=False parameter for the .groupby() function:
results = df.groupby(["X", "Y", "Z", "F"], as_index=False).size().rename(columns={0:'Count'})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With