I have a starting timepoint in milliseconds like so:
using namespace std::chrono;
typedef time_point<system_clock, milliseconds> MyTimePoint;
MyTimePoint startTimePoint = time_point_cast<MyTimePoint::duration>(system_clock::time_point(steady_clock::now()));
Now I will have a certain number of hours that I want to add or subtract to the startTimePoint.
int numHours = -5//or 5 etc (Can be a plus or minus number)
How can I add this abount of time to the original startTimePoint??
If you want to add five hours to startTimePoint
, it's boringly simple:
startTimePoint += hours(5); // from the alias std::chrono::hours
Live example.
By the way, you're trying to convert a steady_clock::now()
into a system_clock::time_point
, which shouldn't even compile. Change the steady_clock::now()
to system_clock::now()
and you should be good to go.
Here I have used time in minutes you can go for anything that you want from the user. So the below is the simple programme using chrono
#include <iostream>
#include <chrono>
using namespace std;
int main() {
using clock = std::chrono::system_clock;
clock::time_point nowp = clock::now();
cout<<"Enter the time that you want to add in minutes"<<endl;
int time_min;
cin>>time_min;
cin.ignore();
clock::time_point end = nowp + std::chrono::minutes(time_min);
time_t nowt = clock::to_time_t ( nowp );
time_t endt = clock::to_time_t ( end);
std::cout << " " << ctime(&nowt) << "\n";
std::cout << ctime(&endt) << std::endl;
return 0;
}
Convert time_point to duration or duration to time_point without intermediate.
It is inherently impossible to convert a time_point to duration or back directly. Many examples use time_t as intermediate, which is a fine method.
I use the method that uses the time_point 'zero' as a helper.
#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
int main(int argc, char *argv[])
{
using namespace std::chrono;
system_clock::time_point zero; // initialised to zero in constructor
system_clock::time_point tp_now; // now as time_point
duration<int, ratio<1>> dur_now; // now as duration
system_clock::time_point tp_future; // calculated future as time_point
// The objective is to sleep_until the system time is at the next 5 minutes
// boundary (e.g. time is 09:35)
tp_now = system_clock::now(); // What time is it now?
cout << "tp_now = " << tp_now.time_since_epoch().count() << endl;
// It is not possible to assign a time_point directly to a duration.
// but the difference between two time_points can be cast to duration
dur_now = duration_cast<seconds>(tp_now-zero); // subtract nothing from time_point
cout << "dur_now = " << dur_now.count() << endl;
// Instead of using seconds granularity, I want to use 5 minutes
// so I define a suitable type: 5 minutes in seconds
typedef duration<int,ratio<5*60>> dur5min;
// When assigning the time_point (ok: duration) is truncated to the nearest 5min
dur5min min5 = duration_cast<dur5min>(tp_now-zero); // (Yes, I do it from time_point again)
cout << "min5 ('now' in 5min units) = " << min5.count() << endl;
// The next 5 min time point is
min5 += dur5min{1};
cout << "min5 += dur5min{1} = " << min5.count() << endl;
// It is not possible to assign a duration directly to a time_point.
// but I can add a duration to a time_point directly
tp_future = zero + min5;
cout << "tp_future = " << tp_future.time_since_epoch().count() << endl;
// to be used in e.g. sleep_until
// std::this_thread::sleep_until(tp_future);
return 0;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With