I am trying to plot a RGBA image with a colorbar representing color values.
The RGBA image is generated from raw data, transforming the 2d data array into a 6d-array with x, y, [R, G, B and A] according to the color input. E.g. 'green' will make it fill just the G channel with the values from the 2d-array, leaving R and B = 0 and A = 255. Like this:
All solutions I found would apply a color map or limit the vmin and vmax of the colorbar but what I need is a colorbar that goes from pitch black to the brightest color present in the image. E.g. if I have an image in shades of purple, the color bar should go from 0 to 'full' purple with only shades of purple in it. The closest solution I found was this (https://pelson.github.io/2013/working_with_colors_in_matplotlib/), but it doesn't fit a "general" solution.
An image I'm getting is given below.
import numpy as np
from ImgMath import colorize
import matplotlib.pyplot as plt
import Mapping
data = Mapping.getpeakmap('Au')
# data shape is (10,13) and len(data) is 10
norm_data = data/data.max()*255
color_data = colorize(norm_data,'green')
# color_data shape is (10,13,4) and len(color_data) is 10
fig, ax = plt.subplots()
im = plt.imshow(color_data)
fig.colorbar(im)
plt.show()
Set the colormap and norm to correspond to the data for which the colorbar will be used. Then create the colorbar by calling ColorbarBase and specify axis, colormap, norm and orientation as parameters. Here we create a basic continuous colorbar with ticks and labels. For more information see the colorbar API.
Matplotlib recognizes the following formats to specify a color. RGB or RGBA (red, green, blue, alpha) tuple of float values in a closed interval [0, 1]. Case-insensitive hex RGB or RGBA string. Case-insensitive RGB or RGBA string equivalent hex shorthand of duplicated characters.
You could map your data with a custom, all-green, colormap
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# input 2D array
data = np.random.randint(0,255, size=(10,13))
z = np.zeros(256)
colors = np.linspace(0,1,256)
alpha = np.ones(256)
#create colormap
greencolors = np.c_[z,colors,z,alpha]
cmap = ListedColormap(greencolors)
im = plt.imshow(data/255., cmap=cmap, vmin=0, vmax=1)
plt.colorbar(im)
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With