I want to use condition GANs with the purpose of generated images for one domain (noted as domain A
) and by having input images from a second domain (noted as domain B
) and the class information as well. Both domains are linked with the same label information (every image of domain A is linked to an image to domain B and a specific label). My generator so far in Keras is the following:
def generator_model_v2():
global BATCH_SIZE
inputs = Input((IN_CH, img_cols, img_rows))
e1 = BatchNormalization(mode=0)(inputs)
e2 = Flatten()(e1)
e3 = BatchNormalization(mode=0)(e2)
e4 = Dense(1024, activation="relu")(e3)
e5 = BatchNormalization(mode=0)(e4)
e6 = Dense(512, activation="relu")(e5)
e7 = BatchNormalization(mode=0)(e6)
e8 = Dense(512, activation="relu")(e7)
e9 = BatchNormalization(mode=0)(e8)
e10 = Dense(IN_CH * img_cols *img_rows, activation="relu")(e9)
e11 = Reshape((3, 28, 28))(e10)
e12 = BatchNormalization(mode=0)(e11)
e13 = Activation('tanh')(e12)
model = Model(input=inputs, output=e13)
return model
So far my generator takes as input the images from the domain A
(and the scope to output images from the domain B
). I want somehow to input also the information of the class for the input domain A with the scope to produce images of the same class for the domain B. How can I add the label information after the flattening. So instead of having input size 1x1024
to have 1x1025
for example. Can I use a second Input for the class information in the Generator. And if yes how can I call then the generator from the training procedure of the GANs?
The training procedure:
discriminator_and_classifier_on_generator = generator_containing_discriminator_and_classifier(
generator, discriminator, classifier)
generator.compile(loss=generator_l1_loss, optimizer=g_optim)
discriminator_and_classifier_on_generator.compile(
loss=[generator_l1_loss, discriminator_on_generator_loss, "categorical_crossentropy"],
optimizer="rmsprop")
discriminator.compile(loss=discriminator_loss, optimizer=d_optim) # rmsprop
classifier.compile(loss="categorical_crossentropy", optimizer=c_optim)
for epoch in range(30):
for index in range(int(X_train.shape[0] / BATCH_SIZE)):
image_batch = Y_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE]
label_batch = LABEL_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE] # replace with your data here
generated_images = generator.predict(X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE])
real_pairs = np.concatenate((X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :], image_batch),axis=1)
fake_pairs = np.concatenate((X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :], generated_images), axis=1)
X = np.concatenate((real_pairs, fake_pairs))
y = np.concatenate((np.ones((100, 1, 64, 64)), np.zeros((100, 1, 64, 64))))
d_loss = discriminator.train_on_batch(X, y)
discriminator.trainable = False
c_loss = classifier.train_on_batch(image_batch, label_batch)
classifier.trainable = False
g_loss = discriminator_and_classifier_on_generator.train_on_batch(
X_train[index * BATCH_SIZE:(index + 1) * BATCH_SIZE, :, :, :],
[image_batch, np.ones((100, 1, 64, 64)), label_batch])
discriminator.trainable = True
classifier.trainable = True
The code is implementation of conditional dcgans (with the addition of a classifier over the discriminator). And the network's functions are:
def generator_containing_discriminator_and_classifier(generator, discriminator, classifier):
inputs = Input((IN_CH, img_cols, img_rows))
x_generator = generator(inputs)
merged = merge([inputs, x_generator], mode='concat', concat_axis=1)
discriminator.trainable = False
x_discriminator = discriminator(merged)
classifier.trainable = False
x_classifier = classifier(x_generator)
model = Model(input=inputs, output=[x_generator, x_discriminator, x_classifier])
return model
def generator_containing_discriminator(generator, discriminator):
inputs = Input((IN_CH, img_cols, img_rows))
x_generator = generator(inputs)
merged = merge([inputs, x_generator], mode='concat',concat_axis=1)
discriminator.trainable = False
x_discriminator = discriminator(merged)
model = Model(input=inputs, output=[x_generator,x_discriminator])
return model
At first, following the suggestion which is given in Conditional Generative Adversarial Nets you have to define a second input. Then, just concatenate the two input vectors and process this concatenated vector.
def generator_model_v2():
input_image = Input((IN_CH, img_cols, img_rows))
input_conditional = Input((n_classes))
e0 = Flatten()(input_image)
e1 = Concatenate()([e0, input_conditional])
e2 = BatchNormalization(mode=0)(e1)
e3 = BatchNormalization(mode=0)(e2)
e4 = Dense(1024, activation="relu")(e3)
e5 = BatchNormalization(mode=0)(e4)
e6 = Dense(512, activation="relu")(e5)
e7 = BatchNormalization(mode=0)(e6)
e8 = Dense(512, activation="relu")(e7)
e9 = BatchNormalization(mode=0)(e8)
e10 = Dense(IN_CH * img_cols *img_rows, activation="relu")(e9)
e11 = Reshape((3, 28, 28))(e10)
e12 = BatchNormalization(mode=0)(e11)
e13 = Activation('tanh')(e12)
model = Model(input=[input_image, input_conditional] , output=e13)
return model
Then, you need to pass the class labels during the training as well to the network:
classifier.train_on_batch((image_batch, class_batch), label_batch)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With