Working on a university exercise, I used the model sub-classing API of TF2.0. Here's my code (it's the Alexnet architecture, if you wonder...):
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
# OPS
self.relu = Activation('relu', name='ReLU')
self.maxpool = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid', name='MaxPool')
self.softmax = Activation('softmax', name='Softmax')
# Conv layers
self.conv1 = Conv2D(filters=96, input_shape=(224, 224, 3), kernel_size=(11, 11), strides=(4, 4), padding='same',
name='conv1')
self.conv2a = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='same', name='conv2a')
self.conv2b = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='same', name='conv2b')
self.conv3 = Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv3')
self.conv4a = Conv2D(filters=192, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv4a')
self.conv4b = Conv2D(filters=192, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv4b')
self.conv5a = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv5a')
self.conv5b = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), padding='same', name='conv5b')
# Fully-connected layers
self.flatten = Flatten()
self.dense1 = Dense(4096, input_shape=(100,), name='FC_4096_1')
self.dense2 = Dense(4096, name='FC_4096_2')
self.dense3 = Dense(1000, name='FC_1000')
# Network definition
def call(self, x, **kwargs):
x = self.conv1(x)
x = self.relu(x)
x = tf.nn.local_response_normalization(x, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
x = self.maxpool(x)
x = tf.concat((self.conv2a(x[:, :, :, :48]), self.conv2b(x[:, :, :, 48:])), 3)
x = self.relu(x)
x = tf.nn.local_response_normalization(x, depth_radius=2, alpha=2e-05, beta=0.75, bias=1.0)
x = self.maxpool(x)
x = self.conv3(x)
x = self.relu(x)
x = tf.concat((self.conv4a(x[:, :, :, :192]), self.conv4b(x[:, :, :, 192:])), 3)
x = self.relu(x)
x = tf.concat((self.conv5a(x[:, :, :, :192]), self.conv5b(x[:, :, :, 192:])), 3)
x = self.relu(x)
x = self.maxpool(x)
x = self.flatten(x)
x = self.dense1(x)
x = self.relu(x)
x = self.dense2(x)
x = self.relu(x)
x = self.dense3(x)
return self.softmax(x)
My goal is to access an arbitrary layer's output (in order to maximize a specific neuron's activation, if you have to know exactly :) ). The problem is that trying to access any layer's output, I get an attribute error. For example:
model = MyModel()
print(model.get_layer('conv1').output)
# => AttributeError: Layer conv1 has no inbound nodes.
I found some questions with this error here in SO, and all of them claim that I have to define the input shape in the first layer, but as you can see - it's already done (see the definition of self.conv1
in the __init__
function)!
I did find that if I define a keras.layers.Input
object, I do manage to get the output of conv1
, but trying to access deeper layers fails, for example:
model = MyModel()
I = tf.keras.Input(shape=(224, 224, 3))
model(I)
print(model.get_layer('conv1').output)
# prints Tensor("my_model/conv1/Identity:0", shape=(None, 56, 56, 96), dtype=float32)
print(model.get_layer('FC_1000').output)
# => AttributeError: Layer FC_1000 has no inbound nodes.
I googled every exception that I got on the way, but found no answer. How can I access any layer's input/output (or input/output _shape attributes, by the way) in this case?
In sub-classed model there is no graph of layers, it's just a piece of code (models call
function). Layer connections are not defined while creating instance of Model class. Hence we need to build model first by calling call
method.
Try this:
model = MyModel()
inputs = tf.keras.Input(shape=(224,224,3))
model.call(inputs)
# instead of model(I) in your code.
After doing this model graph is created.
for i in model.layers:
print(i.output)
# output
# Tensor("ReLU_7/Relu:0", shape=(?, 56, 56, 96), dtype=float32)
# Tensor("MaxPool_3/MaxPool:0", shape=(?, 27, 27, 96), dtype=float32)
# Tensor("Softmax_1/Softmax:0", shape=(?, 1000), dtype=float32)
# ...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With