Lets say I have a MultiIndex Series s
:
>>> s
values
a b
1 2 0.1
3 6 0.3
4 4 0.7
and I want to apply a function which uses the index of the row:
def f(x):
# conditions or computations using the indexes
if x.index[0] and ...:
other = sum(x.index) + ...
return something
How can I do s.apply(f)
for such a function? What is the recommended way to make this kind of operations? I expect to obtain a new Series with the values resulting from this function applied on each row and the same MultiIndex.
Accessing Element from Series with Position In order to access the series element refers to the index number. Use the index operator [ ] to access an element in a series. The index must be an integer. In order to access multiple elements from a series, we use Slice operation.
1) Applying IF condition on NumbersIf the particular number is equal or lower than 53, then assign the value of 'True'. Otherwise, if the number is greater than 53, then assign the value of 'False'.
reset_index() function to reset the index of the given series object and also we will be dropping the original index labels. Output : As we can see in the output, the Series. reset_index() function has reset the index of the given Series object to default.
iloc attribute enables purely integer-location based indexing for selection by position over the given Series object. Example #1: Use Series. iloc attribute to perform indexing over the given Series object.
I don't believe apply
has access to the index; it treats each row as a numpy object, not a Series, as you can see:
In [27]: s.apply(lambda x: type(x))
Out[27]:
a b
1 2 <type 'numpy.float64'>
3 6 <type 'numpy.float64'>
4 4 <type 'numpy.float64'>
To get around this limitation, promote the indexes to columns, apply your function, and recreate a Series with the original index.
Series(s.reset_index().apply(f, axis=1).values, index=s.index)
Other approaches might use s.get_level_values
, which often gets a little ugly in my opinion, or s.iterrows()
, which is likely to be slower -- perhaps depending on exactly what f
does.
Make it a frame, return scalars if you want (so the result is a series)
Setup
In [11]: s = Series([1,2,3],dtype='float64',index=['a','b','c'])
In [12]: s
Out[12]:
a 1
b 2
c 3
dtype: float64
Printing function
In [13]: def f(x):
print type(x), x
return x
....:
In [14]: pd.DataFrame(s).apply(f)
<class 'pandas.core.series.Series'> a 1
b 2
c 3
Name: 0, dtype: float64
<class 'pandas.core.series.Series'> a 1
b 2
c 3
Name: 0, dtype: float64
Out[14]:
0
a 1
b 2
c 3
Since you can return anything here, just return the scalars (access the index via the name
attribute)
In [15]: pd.DataFrame(s).apply(lambda x: 5 if x.name == 'a' else x[0] ,1)
Out[15]:
a 5
b 2
c 3
dtype: float64
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With