What I am trying to do:
I have a simple set union function in C++ using STL, and I'm trying to wrap it in a function that will let me perform the union of arbitrarily many sets contained in STL data structures (e.g. std::list
, std::vector
, std::forward_list
, ...).
How I tried to do it: To start, my simple set union:
#include <algorithm>
template <typename set_type>
set_type sunion(const set_type & lhs, const set_type & rhs)
{
set_type result;
std::set_union( lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::inserter(result, result.end()) );
return result;
}
where set_type
defines some STL std::set<T>
, e.g. std::set<int>
.
After noticing several times that I end up needing to perform several unions on iterators of sets (in Python
this would be a reduce
of my sunion
function over some iterable object of set_type
s). For instance, I might have
std::vector<std::set<int> > all_sets;
or
std::list<std::set<int> > all_sets;
etc., and I want to get the union of all sets in all_sets
. I am trying to implement a simple reduce for this, which essentially does a (faster, more elegant, non-copying) version of:
sunion(... sunion( sunion( all_sets.begin(), all_sets.begin()+1 ), all_sets.begin()+2 ) , ... )
Essentially, to do this quickly, I just want to declare a set_type result
and then iterate through all_sets
and insert value in every set in all_sets
into the result object:
template <typename set_type>
set_type sunion_over_iterator_range(const std::iterator<std::forward_iterator_tag, set_type> & begin, const std::iterator<std::forward_iterator_tag, set_type> & end)
{
set_type result;
for (std::iterator<std::forward_iterator_tag, set_type> iter = begin; iter != end; iter++)
{
insert_all(result, *iter);
}
return result;
}
where insert_all
is defined:
// |= operator; faster than making a copy and performing union
template <typename set_type>
void insert_all(set_type & lhs, const set_type & rhs)
{
for (typename set_type::iterator iter = rhs.begin(); iter != rhs.end(); iter++)
{
lhs.insert(*iter);
}
}
How it didn't work:
Unfortunately, my sunion_over_iterator_range(...)
doesn't work with arguments std::vector<set_type>::begin(), std::vector<set_type>::end()
, which are of type std::vector<set_type>::iterator
. I thought std::vector<T>::iterator
returns an iterator<random_access_iterator_tag, T>
. A
After compilation failed because of type incompatibility of the iterators, I looked at the stl vector source (located in /usr/include/c++/4.6/bits/stl_vector.h for g++ 4.6 & Ubuntu 11.10), and was surprised to see the typedef for vector<T>::iterator
to be typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
. I had thought that a ForwardIterator was a subtype of RandomAccessIterator, and so should be fine, but clearly I was incorrect, or I would not be here.
How I am grateful and ashamed of inciting your frustration due to my inexperience: Apologies if I'm showing my ignorance-- I am trying to learn to be a better object oriented programmer (in the past I have simply hacked everything out in C-style code).
I'm doing my best, coach! Please help me out and spare the world from bad code that I would produce without your code ninja insight...
Here's a very naive approach:
std::set<T> result;
std::vector<std::set<T>> all_sets;
for (std::set<T> & s : all_sets)
{
result.insert(std::make_move_iterator(s.begin()),
std::make_move_iterator(s.end()));
}
This invalidates the elements in the source sets, though it doesn't actually move the element nodes over. If you want to leave the source sets intact, just remove the make_move_iterator
.
Unfortunately there's no interface for std::set
that lets you "splice" two sets in a way that doesn't reallocate the internal tree nodes, so this is more or less as good as you can get.
Here's a variadic template approach:
template <typename RSet> void union(RSet &) { }
template <typename RSet, typename ASet, typename ...Rest>
void union(RSet & result, ASet const & a, Rest const &... r)
{
a.insert(a.begin(), a.end());
union(result, r...);
}
Usage:
std::set<T> result
union(result, s1, s2, s3, s4);
(Similar move-optimizations are feasible here; you can even add some branching that will copy from immutables but move from mutables, or from rvalues only, if you like.)
Here's a version using std::accumulate
:
std::set<T> result =
std::accumulate(all_sets.begin(), all_sets.end(), std::set<T>(),
[](std::set<T> & s, std::set<T> const & t)
{ s.insert(t.begin(), t.end()); return s; } );
This version seems to rely on return value optimisation a lot, though, so you might like to compare it to this hacked up and rather ugly version:
std::set<T> result;
std::accumulate(all_sets.begin(), all_sets.end(), 0,
[&result](int, std::set<T> const & t)
{ result.insert(t.begin(), t.end()); return 0; } );
Usually, when using iterators we don't care about the actual category. Just let the implementation sort it out. That means, just change the function to accept any type:
template <typename T>
typename std::iterator_traits<T>::value_type sunion_over_iterator_range(T begin, T end)
{
typename std::iterator_traits<T>::value_type result;
for (T iter = begin; iter != end; ++ iter)
{
insert_all(result, *iter);
}
return result;
}
Note that I have used typename std::iterator_traits<T>::value_type
, which is the type of *iter
.
BTW, the iterator pattern is not related to OOP. (That doesn't mean it's a bad thing).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With