For getting n-largest values from a NumPy array we have to first sort the NumPy array using numpy. argsort() function of NumPy then applying slicing concept with negative indexing. Return: [index_array, ndarray] Array of indices that sort arr along the specified axis.
Suppose we have an unsorted array, we have to find the kth largest element from that array. So if the array is [3,2,1,5,6,4] and k = 2, then the result will be 5. We will sort the element, if the k is 1, then return last element, otherwise return array[n – k], where n is the size of the array.
The max() Function — Find the Largest Element of a List. In Python, there is a built-in function max() you can use to find the largest number in a list. To use it, call the max() on a list of numbers. It then returns the greatest number in that list.
numpy 1.8
implements partition
and argpartition
that perform partial sort ( in O(n) time as opposed to full sort that is O(n) * log(n)).
import numpy as np
test = np.array([9,1,3,4,8,7,2,5,6,0])
temp = np.argpartition(-test, 4)
result_args = temp[:4]
temp = np.partition(-test, 4)
result = -temp[:4]
Result:
>>> result_args
array([0, 4, 8, 5]) # indices of highest vals
>>> result
array([9, 8, 6, 7]) # highest vals
Timing:
In [16]: a = np.arange(10000)
In [17]: np.random.shuffle(a)
In [18]: %timeit np.argsort(a)
1000 loops, best of 3: 1.02 ms per loop
In [19]: %timeit np.argpartition(a, 100)
10000 loops, best of 3: 139 us per loop
In [20]: %timeit np.argpartition(a, 1000)
10000 loops, best of 3: 141 us per loop
The bottleneck
module has a fast partial sort method that works directly with Numpy arrays: bottleneck.partition()
.
Note that bottleneck.partition()
returns the actual values sorted, if you want the indexes of the sorted values (what numpy.argsort()
returns) you should use bottleneck.argpartition()
.
I've benchmarked:
z = -bottleneck.partition(-a, 10)[:10]
z = a.argsort()[-10:]
z = heapq.nlargest(10, a)
where a
is a random 1,000,000-element array.
The timings were as follows:
bottleneck.partition()
: 25.6 ms per loopnp.argsort()
: 198 ms per loopheapq.nlargest()
: 358 ms per loopI had this problem and, since this question is 5 years old, I had to redo all benchmarks and change the syntax of bottleneck (there is no partsort
anymore, it's partition
now).
I used the same arguments as kwgoodman, except the number of elements retrieved, which I increased to 50 (to better fit my particular situation).
I got these results:
bottleneck 1: 01.12 ms per loop
bottleneck 2: 00.95 ms per loop
pandas : 01.65 ms per loop
heapq : 08.61 ms per loop
numpy : 12.37 ms per loop
numpy 2 : 00.95 ms per loop
So, bottleneck_2 and numpy_2 (adas's solution) were tied.
But, using np.percentile
(numpy_2) you have those topN elements already sorted, which is not the case for the other solutions. On the other hand, if you are also interested on the indexes of those elements, percentile is not useful.
I added pandas too, which uses bottleneck underneath, if available (http://pandas.pydata.org/pandas-docs/stable/install.html#recommended-dependencies). If you already have a pandas Series or DataFrame to start with, you are in good hands, just use nlargest
and you're done.
The code used for the benchmark is as follows (python 3, please):
import time
import numpy as np
import bottleneck as bn
import pandas as pd
import heapq
def bottleneck_1(a, n):
return -bn.partition(-a, n)[:n]
def bottleneck_2(a, n):
return bn.partition(a, a.size-n)[-n:]
def numpy(a, n):
return a[a.argsort()[-n:]]
def numpy_2(a, n):
M = a.shape[0]
perc = (np.arange(M-n,M)+1.0)/M*100
return np.percentile(a,perc)
def pandas(a, n):
return pd.Series(a).nlargest(n)
def hpq(a, n):
return heapq.nlargest(n, a)
def do_nothing(a, n):
return a[:n]
def benchmark(func, size=1000000, ntimes=100, topn=50):
t1 = time.time()
for n in range(ntimes):
a = np.random.rand(size)
func(a, topn)
t2 = time.time()
ms_per_loop = 1000000 * (t2 - t1) / size
return ms_per_loop
t1 = benchmark(bottleneck_1)
t2 = benchmark(bottleneck_2)
t3 = benchmark(pandas)
t4 = benchmark(hpq)
t5 = benchmark(numpy)
t6 = benchmark(numpy_2)
t0 = benchmark(do_nothing)
print("bottleneck 1: {:05.2f} ms per loop".format(t1 - t0))
print("bottleneck 2: {:05.2f} ms per loop".format(t2 - t0))
print("pandas : {:05.2f} ms per loop".format(t3 - t0))
print("heapq : {:05.2f} ms per loop".format(t4 - t0))
print("numpy : {:05.2f} ms per loop".format(t5 - t0))
print("numpy 2 : {:05.2f} ms per loop".format(t6 - t0))
Each negative sign in the proposed bottleneck solution
-bottleneck.partsort(-a, 10)[:10]
makes a copy of the data. We can remove the copies by doing
bottleneck.partsort(a, a.size-10)[-10:]
Also the proposed numpy solution
a.argsort()[-10:]
returns indices not values. The fix is to use the indices to find the values:
a[a.argsort()[-10:]]
The relative speed of the two bottleneck solutions depends on the ordering of the elements in the initial array because the two approaches partition the data at different points.
In other words, timing with any one particular random array can make either method look faster.
Averaging the timing across 100 random arrays, each with 1,000,000 elements, gives
-bn.partsort(-a, 10)[:10]: 1.76 ms per loop
bn.partsort(a, a.size-10)[-10:]: 0.92 ms per loop
a[a.argsort()[-10:]]: 15.34 ms per loop
where the timing code is as follows:
import time
import numpy as np
import bottleneck as bn
def bottleneck_1(a):
return -bn.partsort(-a, 10)[:10]
def bottleneck_2(a):
return bn.partsort(a, a.size-10)[-10:]
def numpy(a):
return a[a.argsort()[-10:]]
def do_nothing(a):
return a
def benchmark(func, size=1000000, ntimes=100):
t1 = time.time()
for n in range(ntimes):
a = np.random.rand(size)
func(a)
t2 = time.time()
ms_per_loop = 1000000 * (t2 - t1) / size
return ms_per_loop
t1 = benchmark(bottleneck_1)
t2 = benchmark(bottleneck_2)
t3 = benchmark(numpy)
t4 = benchmark(do_nothing)
print "-bn.partsort(-a, 10)[:10]: %0.2f ms per loop" % (t1 - t4)
print "bn.partsort(a, a.size-10)[-10:]: %0.2f ms per loop" % (t2 - t4)
print "a[a.argsort()[-10:]]: %0.2f ms per loop" % (t3 - t4)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With