I'm simply trying to plot a surface and its contour in 3D, exactly as in this example.
This is the code I'm using to do it:
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d from matplotlib import cm import numpy def plot_3d_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, file_path): fig = plt.figure() x, y = numpy.mgrid[-x_dim/2:x_dim/2:x_steps*1j, -y_dim/2:y_dim/2:y_steps*1j] v_min = numpy.min(scalar_field) v_max = nupmy.max(scalar_field) ax = fig.gca(projection='3d') cset = ax.contourf(x, y, scalar_field, zdir='z', offset=v_min, cmap=cm.coolwarm) cset = ax.contourf(x, y, scalar_field, zdir='x', offset=-x_dim/2-1, cmap=cm.coolwarm) cset = ax.contourf(x, y, scalar_field, zdir='y', offset=y_dim/2+1, cmap=cm.coolwarm) ax.plot_surface(x, y, scalar_field, rstride=10, cstride=10, alpha=0.3) ax.set_xlabel('X') ax.set_xlim(-x_dim/2-1, x_dim/2+1) ax.set_ylabel('Y') ax.set_ylim(-y_dim/2-1, y_dim/2+1) ax.set_zlabel('Z') ax.set_zlim(v_min, v_max) plt.savefig(file_path + '.jpg') plt.close() scalar_field = numpy.loadtxt('../scalar_field', delimiter=",") plot_3d_contour(12, 12, 100, 100, scalar_field, 'scalar_field3D')
However, I'm getting a weird behavior in which the a contour (zdir=y
) is being over the surface. Besides, I'm getting a weird contour in z_dir=z
(with a section missing):
I'm wondering what I'm missing. The scalar field can be found here.
3D plotting in Matplotlib starts by enabling the utility toolkit. We can enable this toolkit by importing the mplot3d library, which comes with your standard Matplotlib installation via pip. Just be sure that your Matplotlib version is over 1.0. Now that our axes are created we can start plotting in 3D.
Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures.
I agree with Ajean. I believe the problem arises because each matplotlib's artist (i.e. PolygonCollection
) is rendered separately. There is no way different faces from the same object to be rendered on different sides of another object in the scene.
Here is a useful piece of code :
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm import numpy as np file_path = "./3D_surface_and_contour.jpg" p = 0.05 f = -0.01 def get_data(p): x, y, z = axes3d.get_test_data(p) z = f * z return x, y, z def plot_3d_contour(p, f): nrows = 4 ncols = 5 x, y, z = get_data(p) x_min, x_max = np.min(x), np.max(x) y_min, y_max = np.min(y), np.max(y) z_min, z_max = np.min(z), np.max(z) fig = plt.figure(figsize=(15, 10)) for n in range(nrows * ncols): i = n % ncols j = n / ncols k = n + 1 if j == 0: azim = -60 + (i - 2) * 15 elev = 30 elif j == 1: azim = -60 elev = 30 + (i - 2) * 5 elif j == 2: azim = 60 + (i - 2) * 10 elev = 30 elif j == 3: azim = 60 elev = 30 + (i - 2) * 5 ax = fig.add_subplot(nrows, ncols, k, projection='3d') ax.set_title("azim=" + str(azim) + " elev=" + str(elev)) ax.tick_params(labelsize=8) ax.view_init(azim=azim, elev=elev) ax.plot_surface(x, y, z, rstride=10, cstride=10, alpha=0.3) ax.contourf(x, y, z, zdir='z', offset=z_min, cmap=cm.coolwarm) ax.contourf(x, y, z, zdir='x', offset=x_min, cmap=cm.coolwarm) if j == 0 or j == 1: ax.contourf(x, y, z, zdir='y', offset=y_max, cmap=cm.coolwarm) elif j == 2 or j == 3: ax.contourf(x, y, z, zdir='y', offset=y_min, cmap=cm.coolwarm) ax.set_xlabel('X') ax.set_xlim(x_min, x_max) ax.set_ylabel('Y') ax.set_ylim(y_min, y_max) ax.set_zlabel('Z') ax.set_zlim(z_min, z_max) plt.savefig(file_path, dpi=80) plt.close() plot_3d_contour(p, f)
which gives the following image :
The first two rows are produced by a code similar to yours. You might notice that setting the elevation with view_init
to a higher value solve the problem. But it is not satisfactory. I have also determined the influence of the range of the z-values (not shown here), the bug seems to appear only when this range is small (you can use the f
parameter to test it) which explain why the example does not suffer from it.
The solution I propose is to replace :
ax.contourf(x, y, scalar_field, zdir='y', offset=y_dim/2+1, cmap=cm.coolwarm)
by :
ax.contourf(x, y, scalar_field, zdir='y', offset=-y_dim/2-1, cmap=cm.coolwarm)
in your code and add this additional line :
ax.view_init(azim=60, elev=30)
As shown in the last two rows of the previous image, this way you will be able to avoid the whims of matplotlib.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With