I have searched and found a lot of 2D image registration images in Python, but those will not serve my need. I have several MRI and CT images all taken of the same patient over time and was wondering if anybody had sample Python code for performing a 3D rigid image registration for these medical images.
you can use python in SimpleITK:
https://itk.org/Wiki/SimpleITK/Tutorials/MICCAI2015
import SimpleITK as sitk
def save_combined_central_slice(fixed, moving, transform, file_name_prefix):
global iteration_number
alpha = 0.7
central_indexes = [i/2 for i in fixed.GetSize()]
moving_transformed = sitk.Resample(moving, fixed, transform,
sitk.sitkLinear, 0.0,
moving_image.GetPixelIDValue())
#extract the central slice in xy, xz, yz and alpha blend them
combined = [(1.0 - alpha)*fixed[:,:,central_indexes[2]] + \
alpha*moving_transformed[:,:,central_indexes[2]],
(1.0 - alpha)*fixed[:,central_indexes[1],:] + \
alpha*moving_transformed[:,central_indexes[1],:],
(1.0 - alpha)*fixed[central_indexes[0],:,:] + \
alpha*moving_transformed[central_indexes[0],:,:]]
#resample the alpha blended images to be isotropic and rescale intensity
#values so that they are in [0,255], this satisfies the requirements
#of the jpg format
combined_isotropic = []
for img in combined:
original_spacing = img.GetSpacing()
original_size = img.GetSize()
min_spacing = min(original_spacing)
new_spacing = [min_spacing, min_spacing]
new_size = [int(round(original_size[0]*(original_spacing[0]/min_spacing))),
int(round(original_size[1]*(original_spacing[1]/min_spacing)))]
resampled_img = sitk.Resample(img, new_size, sitk.Transform(),
sitk.sitkLinear, img.GetOrigin(),
new_spacing, img.GetDirection(), 0.0,
img.GetPixelIDValue())
combined_isotropic.append(sitk.Cast(sitk.RescaleIntensity(resampled_img),
sitk.sitkUInt8))
#tile the three images into one large image and save using the given file
#name prefix and the iteration number
sitk.WriteImage(sitk.Tile(combined_isotropic, (1,3)),
file_name_prefix+ format(iteration_number, '03d') + '.jpg')
iteration_number+=1
#read the images
fixed_image = sitk.ReadImage("training_001_ct.mha", sitk.sitkFloat32)
moving_image = sitk.ReadImage("training_001_mr_T1.mha", sitk.sitkFloat32)
#initial alignment of the two volumes
transform = sitk.CenteredTransformInitializer(fixed_image,
moving_image,
sitk.Euler3DTransform(),
sitk.CenteredTransformInitializerFilter.GEOMETRY)
#multi-resolution rigid registration using Mutual Information
registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.01)
registration_method.SetInterpolator(sitk.sitkLinear)
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0,
numberOfIterations=100,
convergenceMinimumValue=1e-6,
convergenceWindowSize=10)
registration_method.SetOptimizerScalesFromPhysicalShift()
registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0])
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
registration_method.SetInitialTransform(transform)
#add iteration callback, save central slice in xy, xz, yz planes
global iteration_number
iteration_number = 0
registration_method.AddCommand(sitk.sitkIterationEvent,
lambda: save_combined_central_slice(fixed_image,
moving_image,
transform,
'output/iteration'))
registration_method.Execute(fixed_image, moving_image)
sitk.WriteTransform(transform, 'output/ct2mrT1.tfm')
you might try lcreg, see https://pypi.org/project/lcreg. The pypi page provides a link to a tutorial and sample data.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With