I have a 3 dimensional numpy
array, (z, x, y)
. z
is a time dimension and x
and y
are coordinates.
I want to convert this to a multiindexed pandas.DataFrame
. I want the row index to be the z dimension
and each column to have values from a unique x, y coordinate (and so, each column would be multi-indexed).
The simplest case (not multi-indexed):
>>> array.shape
(500L, 120L, 100L)
>>> df = pd.DataFrame(array[:,0,0])
>>> df.shape
(500, 1)
I've been trying to pass the whole array into a multiindex dataframe using pd.MultiIndex.from_arrays but I'm getting an error: NotImplementedError: > 1 ndim Categorical are not supported at this time
Looks like it should be fairly simple but I cant figure it out.
I find that a Series with a Multiindex is the most analagous pandas datatype for a numpy array with arbitrarily many dimensions (presumably 3 or more).
Here is some example code:
import pandas as pd
import numpy as np
time_vals = np.linspace(1, 50, 50)
x_vals = np.linspace(-5, 6, 12)
y_vals = np.linspace(-4, 5, 10)
measurements = np.random.rand(50,12,10)
#setup multiindex
mi = pd.MultiIndex.from_product([time_vals, x_vals, y_vals], names=['time', 'x', 'y'])
#connect multiindex to data and save as multiindexed Series
sr_multi = pd.Series(index=mi, data=measurements.flatten())
#pull out a dataframe of x, y at time=22
sr_multi.xs(22, level='time').unstack(level=0)
#pull out a dataframe of y, time at x=3
sr_multi.xs(3, level='x').unstack(level=1)
I think you can use panel - and then for Multiindex DataFrame
add to_frame
:
np.random.seed(10)
arr = np.random.randint(10, size=(5,3,2))
print (arr)
[[[9 4]
[0 1]
[9 0]]
[[1 8]
[9 0]
[8 6]]
[[4 3]
[0 4]
[6 8]]
[[1 8]
[4 1]
[3 6]]
[[5 3]
[9 6]
[9 1]]]
df = pd.Panel(arr).to_frame()
print (df)
0 1 2 3 4
major minor
0 0 9 1 4 1 5
1 4 8 3 8 3
1 0 0 9 0 4 9
1 1 0 4 1 6
2 0 9 8 6 3 9
1 0 6 8 6 1
Also transpose
can be useful:
df = pd.Panel(arr).transpose(1,2,0).to_frame()
print (df)
0 1 2
major minor
0 0 9 0 9
1 1 9 8
2 4 0 6
3 1 4 3
4 5 9 9
1 0 4 1 0
1 8 0 6
2 3 4 8
3 8 1 6
4 3 6 1
Another possible solution with concat
:
arr = arr.transpose(1,2,0)
df = pd.concat([pd.DataFrame(x) for x in arr], keys=np.arange(arr.shape[2]))
print (df)
0 1 2 3 4
0 0 9 1 4 1 5
1 4 8 3 8 3
1 0 0 9 0 4 9
1 1 0 4 1 6
2 0 9 8 6 3 9
1 0 6 8 6 1
np.random.seed(10)
arr = np.random.randint(10, size=(500,120,100))
df = pd.Panel(arr).transpose(2,0,1).to_frame()
print (df.shape)
(60000, 100)
print (df.index.max())
(499, 119)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With