Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

2D bin packing on a grid

I have an n × m grid and a collection of polyominos. I would like to know if it is possible to pack them into the grid: no overlapping or rotation is allowed.

I expect that like most packing problems this version is NP-hard and difficult to approximate, so I'm not expecting anything crazy, but an algorithm that could find reasonable packings on a grid around 25 × 25 and be fairly comprehensive around 10 × 10 would be great. (My tiles are mostly tetrominos -- four blocks -- but they could have 5–9+ blocks.)

I'll take whatever anyone has to offer: an algorithm, a paper, an existing program which can be adapted.

like image 578
Charles Avatar asked Dec 21 '17 05:12

Charles


Video Answer


2 Answers

Here is a prototype-like SAT-solver approach, which tackles:

  • a-priori fixed polyomino patterns (see Constants / Input in code)
    • if rotations should be allowed, rotated pieces have to be added to the set
  • every polyomino can be placed 0-inf times
  • there is no scoring-mechanic besides:
    • the number of non-covered tiles is minimized!

Considering classic off-the-shelf methods for combinatorial-optimization (SAT, CP, MIP), this one will probably scale best (educated guess). It will also be very hard to beat when designing customized heuristics!

If needed, these slides provide some practical introduction to SAT-solvers in practice. Here we are using CDCL-based solvers which are complete (will always find a solution in finite time if there is one; will always be able to prove there is no solution in finite time if there is none; memory of course also plays a role!).

More complex (linear) per-tile scoring-functions are hard to incorporate in general. This is where a (M)IP-approach can be better. But in terms of pure search SAT-solving is much faster in general.

The N=25 problem with my polyomino-set takes ~ 1 second (and one could easily parallize this on multiple granularity-levels -> SAT-solver (threadings-param) vs. outer-loop; the latter will be explained later).

Of course the following holds:

  • as this is an NP-hard problem, there will be easy and non-easy instances
  • i did not do scientific benchmarks with many different sets of polyominos
    • it's to be expected that some sets are easier to solve than others
  • this is one possible SAT-formulation (not the most trivial!) of infinite many
    • each formulation has advantages and disadvantages

Idea

The general approach is creating a decision-problem and transforming it into CNF, which is then solved by highly efficient SAT-solvers (here: cryptominisat; CNF will be in DIMCAS-CNF format), which will be used as black-box solvers (no parameter-tuning!).

As the goal is to optimize the number of filled tiles and we are using a decision-problem, we need an outer-loop, adding a minimum tile-used constraint and try to solve it. If not successful, decrease this number. So in general we are calling the SAT-solver multiple times (from scratch!).

There are many different formulations / transformations to CNF possible. Here we use (binary) decision-variables X which indicate a placement. A placement is a tuple like polyomino, x_index, y_index (this index marks the top-left field of some pattern). There is a one-to-one mapping between the number of variables and the number of possible placements of all polyominos.

The core idea is: search in the space of all possible placement-combinations for one solution, which is not invalidating some constraints.

Additionally, we have decision-variables Y, which indicate a tile being filled. There are M*N such variables.

When having access to all possible placements, it's easy to calculate a collision-set for each tile-index (M*N). Given some fixed tile, we can check which placements can fill this one and constrain the problem to only select <=1 of those. This is active on X. In the (M)IP world this probably would be called convex-hull for the collisions.

n<=k-constraints are ubiquitous in SAT-solving and many different formulations are possible. Naive-encoding would need an exponential number of clauses in general which easily becomes infeasibly. Using new variables, there are many variable-clause trade-offs (see Tseitin-encoding) possible. I'm reusing one (old code; only reason why my code is python2-only) which worked good for me in the past. It's based on describing hardware-based counter-logic into CNF and provides good empirical- and theoretical performance (see paper). Of course there are many alternatives.

Additionally, we need to force the SAT-solver not to make all variables negative. We have to add constraints describing the following (that's one approach):

  • if some field is used: there has to be at least one placement active (poly + x + y), which results in covering this field!
    • this is a basic logical implication easily formulated as one potentially big logical or

Then only the core-loop is missing, trying to fill N fields, then N-1 until successful. This is again using the n<=k formulation mentioned earlier.

Code

This is python2-code, which needs the SAT-solver cryptominisat 5 in the directory the script is run from.

I'm also using tools from python's excellent scientific-stack.

# PYTHON 2!
import math
import copy
import subprocess
import numpy as np
import matplotlib.pyplot as plt      # plotting-only
import seaborn as sns                # plotting-only
np.set_printoptions(linewidth=120)   # more nice console-output

""" Constants / Input
        Example: 5 tetrominoes; no rotation """
M, N = 25, 25
polyominos = [np.array([[1,1,1,1]]),
              np.array([[1,1],[1,1]]),
              np.array([[1,0],[1,0], [1,1]]),
              np.array([[1,0],[1,1],[0,1]]),
              np.array([[1,1,1],[0,1,0]])]

""" Preprocessing
        Calculate:
        A: possible placements
        B: covered positions
        C: collisions between placements
"""
placements = []
covered = []
for p_ind, p in enumerate(polyominos):
    mP, nP = p.shape
    for x in range(M):
        for y in range(N):
            if x + mP <= M:          # assumption: no zero rows / cols in each p
                if y + nP <= N:      # could be more efficient
                    placements.append((p_ind, x, y))
                    cover = np.zeros((M,N), dtype=bool)
                    cover[x:x+mP, y:y+nP] = p
                    covered.append(cover)                           
covered = np.array(covered)

collisions = []
for m in range(M):
    for n in range(N):
        collision_set = np.flatnonzero(covered[:, m, n])
        collisions.append(collision_set)

""" Helper-function: Cardinality constraints """
# K-ARY CONSTRAINT GENERATION
# ###########################
# SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints.
# CP, 2005, 3709. Jg., S. 827-831.

def next_var_index(start):
    next_var = start
    while(True):
        yield next_var
        next_var += 1

class s_index():
    def __init__(self, start_index):
        self.firstEnvVar = start_index

    def next(self,i,j,k):
        return self.firstEnvVar + i*k +j

def gen_seq_circuit(k, input_indices, next_var_index_gen):
    cnf_string = ''
    s_index_gen = s_index(next_var_index_gen.next())

    # write clauses of first partial sum (i.e. i=0)
    cnf_string += (str(-input_indices[0]) + ' ' + str(s_index_gen.next(0,0,k)) + ' 0\n')
    for i in range(1, k):
        cnf_string += (str(-s_index_gen.next(0, i, k)) + ' 0\n')

    # write clauses for general case (i.e. 0 < i < n-1)
    for i in range(1, len(input_indices)-1):
        cnf_string += (str(-input_indices[i]) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
        cnf_string += (str(-s_index_gen.next(i-1, 0, k)) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
        for u in range(1, k):
            cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, u-1, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
            cnf_string += (str(-s_index_gen.next(i-1, u, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
        cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, k-1, k)) + ' 0\n')

    # last clause for last variable
    cnf_string += (str(-input_indices[-1]) + ' ' + str(-s_index_gen.next(len(input_indices)-2, k-1, k)) + ' 0\n')

    return (cnf_string, (len(input_indices)-1)*k, 2*len(input_indices)*k + len(input_indices) - 3*k - 1)

def gen_at_most_n_constraints(vars, start_var, n):
    constraint_string = ''
    used_clauses = 0
    used_vars = 0
    index_gen = next_var_index(start_var)
    circuit = gen_seq_circuit(n, vars, index_gen)
    constraint_string += circuit[0]
    used_clauses += circuit[2]
    used_vars += circuit[1]
    start_var += circuit[1]

    return [constraint_string, used_clauses, used_vars, start_var]

def parse_solution(output):
    # assumes there is one
    vars = []
    for line in output.split("\n"):
        if line:
            if line[0] == 'v':
                line_vars = list(map(lambda x: int(x), line.split()[1:]))
                vars.extend(line_vars)
    return vars

def solve(CNF):
    p = subprocess.Popen(["cryptominisat5.exe"], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
    result = p.communicate(input=CNF)[0]
    sat_line = result.find('s SATISFIABLE')
    if sat_line != -1:
        # solution found!
        vars = parse_solution(result)
        return True, vars
    else:
        return False, None

""" SAT-CNF: BASE """
X = np.arange(1, len(placements)+1)                                     # decision-vars
                                                                        # 1-index for CNF
Y = np.arange(len(placements)+1, len(placements)+1 + M*N).reshape(M,N)
next_var = len(placements)+1 + M*N                                      # aux-var gen
n_clauses = 0

cnf = ''                                                                # slow string appends
                                                                        # int-based would be better
# <= 1 for each collision-set
for cset in collisions:
    constraint_string, used_clauses, used_vars, next_var = \
        gen_at_most_n_constraints(X[cset].tolist(), next_var, 1)
    n_clauses += used_clauses
    cnf += constraint_string

# if field marked: one of covering placements active
for x in range(M):
    for y in range(N):
        covering_placements = X[np.flatnonzero(covered[:, x, y])]  # could reuse collisions
        clause = str(-Y[x,y])
        for i in covering_placements:
            clause += ' ' + str(i)
        clause += ' 0\n'
        cnf += clause
        n_clauses += 1

print('BASE CNF size')
print('clauses: ', n_clauses)
print('vars: ', next_var - 1)

""" SOLVE in loop -> decrease number of placed-fields until SAT """
print('CORE LOOP')
N_FIELD_HIT = M*N
while True:
    print(' N_FIELDS >= ', N_FIELD_HIT)
    # sum(y) >= N_FIELD_HIT
    # == sum(not y) <= M*N - N_FIELD_HIT
    cnf_final = copy.copy(cnf)
    n_clauses_final = n_clauses

    if N_FIELD_HIT == M*N:  # awkward special case
        constraint_string = ''.join([str(y) + ' 0\n' for y in Y.ravel()])
        n_clauses_final += N_FIELD_HIT
    else:
        constraint_string, used_clauses, used_vars, next_var = \
            gen_at_most_n_constraints((-Y).ravel().tolist(), next_var, M*N - N_FIELD_HIT)
        n_clauses_final += used_clauses

    n_vars_final = next_var - 1
    cnf_final += constraint_string
    cnf_final = 'p cnf ' + str(n_vars_final) + ' ' + str(n_clauses) + \
        ' \n' + cnf_final  # header

    status, sol = solve(cnf_final)
    if status:
        print(' SOL found: ', N_FIELD_HIT)

        """ Print sol """
        res = np.zeros((M, N), dtype=int)
        counter = 1
        for v in sol[:X.shape[0]]:
            if v>0:
                p, x, y = placements[v-1]
                pM, pN = polyominos[p].shape
                poly_nnz = np.where(polyominos[p] != 0)
                x_inds, y_inds = x+poly_nnz[0], y+poly_nnz[1]
                res[x_inds, y_inds] = p+1
                counter += 1
        print(res)

        """ Plot """
        # very very ugly code; too lazy
        ax1 = plt.subplot2grid((5, 12), (0, 0), colspan=11, rowspan=5)
        ax_p0 = plt.subplot2grid((5, 12), (0, 11))
        ax_p1 = plt.subplot2grid((5, 12), (1, 11))
        ax_p2 = plt.subplot2grid((5, 12), (2, 11))
        ax_p3 = plt.subplot2grid((5, 12), (3, 11))
        ax_p4 = plt.subplot2grid((5, 12), (4, 11))
        ax_p0.imshow(polyominos[0] * 1, vmin=0, vmax=5)
        ax_p1.imshow(polyominos[1] * 2, vmin=0, vmax=5)
        ax_p2.imshow(polyominos[2] * 3, vmin=0, vmax=5)
        ax_p3.imshow(polyominos[3] * 4, vmin=0, vmax=5)
        ax_p4.imshow(polyominos[4] * 5, vmin=0, vmax=5)
        ax_p0.xaxis.set_major_formatter(plt.NullFormatter())
        ax_p1.xaxis.set_major_formatter(plt.NullFormatter())
        ax_p2.xaxis.set_major_formatter(plt.NullFormatter())
        ax_p3.xaxis.set_major_formatter(plt.NullFormatter())
        ax_p4.xaxis.set_major_formatter(plt.NullFormatter())
        ax_p0.yaxis.set_major_formatter(plt.NullFormatter())
        ax_p1.yaxis.set_major_formatter(plt.NullFormatter())
        ax_p2.yaxis.set_major_formatter(plt.NullFormatter())
        ax_p3.yaxis.set_major_formatter(plt.NullFormatter())
        ax_p4.yaxis.set_major_formatter(plt.NullFormatter())

        mask = (res==0)
        sns.heatmap(res, cmap='viridis', mask=mask, cbar=False, square=True, linewidths=.1, ax=ax1)
        plt.tight_layout()
        plt.show()
        break

    N_FIELD_HIT -= 1  # binary-search could be viable in some cases
                      # but beware the empirical asymmetry in SAT-solvers:
                      #    finding solution vs. proving there is none!

Output console

BASE CNF size
('clauses: ', 31509)
('vars: ', 13910)
CORE LOOP
(' N_FIELDS >= ', 625)
(' N_FIELDS >= ', 624)
(' SOL found: ', 624)
[[3 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2]
 [3 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2]
 [3 3 3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2]
 [2 2 3 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2]
 [2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2]
 [1 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2]
 [1 1 1 1 3 3 3 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1]
 [2 2 1 1 1 1 3 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2]
 [2 2 2 2 2 2 3 3 3 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2]
 [2 2 2 2 2 2 2 2 3 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2]
 [2 2 1 1 1 1 2 2 3 3 3 2 2 2 2 2 2 1 1 1 1 2 2 2 2]
 [1 1 1 1 1 1 1 1 2 2 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1]
 [2 2 3 1 1 1 1 3 2 2 3 3 4 1 1 1 1 2 2 1 1 1 1 2 2]
 [2 2 3 1 1 1 1 3 1 1 1 1 4 4 3 2 2 2 2 1 1 1 1 2 2]
 [2 2 3 3 5 5 5 3 3 1 1 1 1 4 3 2 2 1 1 1 1 1 1 1 1]
 [2 2 2 2 4 5 1 1 1 1 1 1 1 1 3 3 3 2 2 1 1 1 1 2 2]
 [2 2 2 2 4 4 2 2 1 1 1 1 1 1 1 1 3 2 2 1 1 1 1 2 2]
 [2 2 2 2 3 4 2 2 2 2 2 2 1 1 1 1 3 3 3 2 2 2 2 2 2]
 [3 4 2 2 3 5 5 5 2 2 2 2 1 1 1 1 2 2 3 2 2 2 2 2 2]
 [3 4 4 3 3 3 5 5 5 5 1 1 1 1 2 2 2 2 3 3 3 2 2 2 2]
 [3 3 4 3 1 1 1 1 5 1 1 1 1 4 2 2 2 2 2 2 3 2 2 2 2]
 [2 2 3 3 3 1 1 1 1 1 1 1 1 4 4 4 2 2 2 2 3 3 0 2 2]
 [2 2 3 1 1 1 1 1 1 1 1 5 5 5 4 4 4 1 1 1 1 2 2 2 2]
 [2 2 3 3 1 1 1 1 1 1 1 1 5 5 5 5 4 1 1 1 1 2 2 2 2]
 [2 2 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 2 2]]

Output plot

enter image description here

One field cannot be covered in this parameterization!

Some other examples with a bigger set of patterns

Square M=N=61 (prime -> intuition: harder) where the base-CNF has 450.723 clauses and 185.462 variables. There is an optimal packing!

enter image description here

Non-square M,N =83,131 (double prime) where the base-CNF has 1.346.511 clauses and 553.748 variables. There is an optimal packing!

enter image description here

like image 58
sascha Avatar answered Sep 19 '22 22:09

sascha


One approach could be using integer programming. I'll implement this using the python pulp package, though packages are available for pretty much any programming language.

The basic idea is to define a decision variable for every possible placement location for every tile. If a decision variable takes value 1, then its associated tile is placed there. If it takes value 0, then it is not placed there. The objective is therefore to maximize the sum of the decision variables times the number of squares in the variable's tile --- this corresponds to placing the maximum number of squares possible on the board.

My code implements two constraints:

  • Each tile can only be placed once (below we will relax this constraint)
  • Each square can have at most one tile on it

Here's the output for a set of five fixed tetrominoes on a 4x5 grid:

import itertools
import pulp
import string

def covered(tile, base):
    return {(base[0] + t[0], base[1] + t[1]): True for t in tile}

tiles = [[(0,0), (1,0), (0,1), (0,2)],
         [(0,0), (1,0), (2,0), (3,0)],
         [(1,0), (0,1), (1,1), (2,0)],
         [(0,0), (1,0), (0,1), (1,1)],
         [(1,0), (0,1), (1,1), (2,1)]]
rows = 25
cols = 25
squares = {x: True for x in itertools.product(range(rows), range(cols))}
vars = list(itertools.product(range(rows), range(cols), range(len(tiles))))
vars = [x for x in vars if all([y in squares for y in covered(tiles[x[2]], (x[0], x[1])).keys()])]
x = pulp.LpVariable.dicts('tiles', vars, lowBound=0, upBound=1, cat=pulp.LpInteger)
mod = pulp.LpProblem('polyominoes', pulp.LpMaximize)
# Objective value is number of squares in tile
mod += sum([len(tiles[p[2]]) * x[p] for p in vars])
# Don't use any shape more than once
for tnum in range(len(tiles)):
    mod += sum([x[p] for p in vars if p[2] == tnum]) <= 1
# Each square can be covered by at most one shape
for s in squares:
    mod += sum([x[p] for p in vars if s in covered(tiles[p[2]], (p[0], p[1]))]) <= 1
# Solve and output
mod.solve()
out = [['-'] * cols for rep in range(rows)]
chars = string.ascii_uppercase + string.ascii_lowercase
numset = 0
for p in vars:
    if x[p].value() == 1.0:
        for off in tiles[p[2]]:
            out[p[0] + off[0]][p[1] + off[1]] = chars[numset]
        numset += 1
for row in out:
    print(''.join(row))

It obtains the following optimal solution:

AAAB-
A-BBC
DDBCC
DD--C

If we allow repeats (comment out the constraint limiting to one copy of each shape), then we can completely tile the grid:

ABCDD
ABCDD
ABCEE
ABCEE

It worked near-instantaneously for a 10x10 grid:

ABCCDDEEFF
ABCCDDEEFF
ABGHHIJJKK
ABGHHIJJKK
LLGMMINOPP
LLGMMINOPP
QQRRSTNOUV
QQRRSTNOUV
WWXXSTYYUV
WWXXSTYYUV

The code obtains an optimal solution for the 25x25 grid in 100 seconds of runtime, though unfortunately there aren't enough letter and numbers for my output code to print the solution.

like image 41
josliber Avatar answered Sep 20 '22 22:09

josliber