My unix/windows C++ app is already parallelized using MPI: the job is splitted in N cpus and each chunk is executed in parallel, quite efficient, very good speed scaling, the job is done right.
But some of the data is repeated in each process, and for technical reasons this data cannot be easily splitted over MPI (...). For example:
On a 4 CPU job, this would mean at least a 20Gb RAM load, most of memory 'wasted', this is awful.
I'm thinking using shared memory to reduce the overall load, the "static" chunk would be loaded only once per computer.
So, main question is:
Is there any standard MPI way to share memory on a node? Some kind of readily available + free library ?
boost.interprocess
and use MPI calls to distribute local shared memory identifiers.Any performance hit or particular issues to be wary of?
The job will be executed in a PBS (or SGE) queuing system, in the case of a process unclean exit, I wonder if those will cleanup the node-specific shared memory.
One increasingly common approach in High Performance Computing (HPC) is hybrid MPI/OpenMP programs. I.e. you have N MPI processes, and each MPI process has M threads. This approach maps well to clusters consisting of shared memory multiprocessor nodes.
Changing to such a hierarchical parallelization scheme obviously requires some more or less invasive changes, OTOH if done properly it can increase the performance and scalability of the code in addition to reducing memory consumption for replicated data.
Depending on the MPI implementation, you may or may not be able to make MPI calls from all threads. This is specified by the required
and provided
arguments to the MPI_Init_Thread() function that you must call instead of MPI_Init(). Possible values are
{ MPI_THREAD_SINGLE} Only one thread will execute. { MPI_THREAD_FUNNELED} The process may be multi-threaded, but only the main thread will make MPI calls (all MPI calls are ``funneled'' to the main thread). { MPI_THREAD_SERIALIZED} The process may be multi-threaded, and multiple threads may make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are ``serialized''). { MPI_THREAD_MULTIPLE} Multiple threads may call MPI, with no restrictions.
In my experience, modern MPI implementations like Open MPI support the most flexible MPI_THREAD_MULTIPLE. If you use older MPI libraries, or some specialized architecture, you might be worse off.
Of course, you don't need to do your threading with OpenMP, that's just the most popular option in HPC. You could use e.g. the Boost threads library, the Intel TBB library, or straight pthreads or windows threads for that matter.
I haven't worked with MPI, but if it's like other IPC libraries I've seen that hide whether other threads/processes/whatever are on the same or different machines, then it won't be able to guarantee shared memory. Yes, it could handle shared memory between two nodes on the same machine, if that machine provided shared memory itself. But trying to share memory between nodes on different machines would be very difficult at best, due to the complex coherency issues raised. I'd expect it to simply be unimplemented.
In all practicality, if you need to share memory between nodes, your best bet is to do that outside MPI. i don't think you need to use boost.interprocess
-style shared memory, since you aren't describing a situation where the different nodes are making fine-grained changes to the shared memory; it's either read-only or partitioned.
John's and deus's answers cover how to map in a file, which is definitely what you want to do for the 5 Gb (gigabit?) static data. The per-CPU data sounds like the same thing, and you just need to send a message to each node telling it what part of the file it should grab. The OS should take care of mapping virtual memory to physical memory to the files.
As for cleanup... I would assume it doesn't do any cleanup of shared memory, but mmap
ed files should be cleaned up since files are closed (which should release their memory mappings) when a process is cleaned up. I have no idea what caveats CreateFileMapping
etc. have.
Actual "shared memory" (i.e. boost.interprocess
) is not cleaned up when a process dies. If possible, I'd recommend trying killing a process and seeing what is left behind.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With