What is the simplest way to do a three-way exclusive OR?
In other words, I have three values, and I want a statement that evaluates to true IFF only one of the three values is true.
So far, this is what I've come up with:
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
Is there something simpler to do the same thing?
Here's the proof that the above accomplishes the task:
a = true; b = true; c = true ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => false a = true; b = true; c = false ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => false a = true; b = false; c = true ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => false a = true; b = false; c = false ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => true a = false; b = true; c = true ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => false a = false; b = true; c = false ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => true a = false; b = false; c = true ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => true a = false; b = false; c = false ((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b)) => false
For 3 or more inputs, the XOR gate has a value of 1when there is an odd number of 1's in the inputs, otherwise, it is a 0. Notice also that the truth tables for the 3-input XOR and XNOR gates are identical.
For 3-input XOR gates, we can have the HIGH input when odd numbers of inputs are at HIGH level. So the 3-input OR gate is called as “Odd functioned OR gate”.
For exactly three terms, you can use this expression:
(a ^ b ^ c) && !(a && b && c) The first part is true iff one or three of the terms are true. The second part of the expression ensures that not all three are true.
Note that the above expression does NOT generalize to more terms. A more general solution is to actually count how many terms are true, so something like this:
int trueCount = (a ? 1 : 0) + (b ? 1 : 0) + (c ? 1 : 0) + ... // more terms as necessary return (trueCount == 1); // or some range check expression etc
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With