Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Where does finite-state machine code belong in µC?

I asked this question on EE forum. You guys on StackOverflow know more about coding than we do on EE so maybe you can give more detail information about this :)


When I learned about micrcontrollers, teachers taught me to always end the code with while(1); with no code inside that loop.

This was to be sure that the software get "stuck" to keep interruption working. When I asked them if it was possible to put some code in this infinite loop, they told me it was a bad idea. Knowing that, I now try my best to keep this loop empty.

I now need to implement a finite state machine in a microcontroller. At first view, it seems that that code belong in this loop. That makes coding easier.

Is that a good idea? What are the pros and cons?

This is what I plan to do :

void main(void)
{
    // init phase

 while(1)
 {
    switch(current_State)
    {
    case 1:
        if(...)
        {
            current_State = 2;
        }
        else(...)
        {
            current_State = 3;
        }
        else
            current_State = 4;
        break;

    case 2:
        if(...)
        {
            current_State = 3;
        }
        else(...)
        {
            current_State = 1;
        }
        else
            current_State = 5;
        break;
   }
}

Instead of:

 void main(void)
    {
        // init phase

     while(1);
    }

And manage the FSM with interrupt

like image 428
M.Ferru Avatar asked Feb 01 '26 21:02

M.Ferru


2 Answers

It is like saying return all functions in one place, or other habits. There is one type of design where you might want to do this, one that is purely interrupt/event based. There are products, that go completely the other way, polled and not even driven. And anything in between.

What matters is doing your system engineering, thats it, end of story. Interrupts add complication and risk, they have a higher price than not using them. Automatically making any design interrupt driven is automatically a bad decision, simply means there was no effort put into the design, the requirements the risks, etc.

Ideally you want most of your code in the main loop, you want your interrupts lean and mean in order to keep the latency down for other time critical tasks. Not all MCUs have a complicated interrupt priority system that would allow you to burn a lot of time or have all of your application in handlers. Inputs into your system engineering, may help choose the mcu, but here again you are adding risk.

You have to ask yourself what are the tasks your mcu has to do, what if any latency is there for each task from when an event happens until they have to start responding and until they have to finish, per event/task what if any portion of it can be deferred. Can any be interrupted while doing the task, can there be a gap in time. All the questions you would do for a hardware design, or cpld or fpga design. except you have real parallelism there.

What you are likely to end up with in real world solutions are some portion in interrupt handlers and some portion in the main (infinite) loop. The main loop polling breadcrumbs left by the interrupts and/or directly polling status registers to know what to do during the loop. If/when you get to where you need to be real time you can still use the main super loop, your real time response comes from the possible paths through the loop and the worst case time for any of those paths.

Most of the time you are not going to need to do this much work. Maybe some interrupts, maybe some polling, and a main loop doing some percentage of the work.

As you should know from the EE world if a teacher/other says there is one and only one way to do something and everything else is by definition wrong...Time to find a new teacher and or pretend to drink the kool-aid, pass the class and move on with your life. Also note that the classroom experience is not real world. There are so many things that can go wrong with MCU development, that you are really in a controlled sandbox with ideally only a few variables you can play with so that you dont have spend years to try to get through a few month class. Some percentage of the rules they state in class are to get you through the class and/or to get the teacher through the class, easier to grade papers if you tell folks a function cant be bigger than X or no gotos or whatever. First thing you should do when the class is over or add to your lifetime bucket list, is to question all of these rules. Research and try on your own, fall into the traps and dig out.

like image 93
old_timer Avatar answered Feb 04 '26 00:02

old_timer


When doing embedded programming, one commonly used idiom is to use a "super loop" - an infinite loop that begins after initialization is complete that dispatches the separate components of your program as they need to run. Under this paradigm, you could run the finite state machine within the super loop as you're suggesting, and continue to run the hardware management functions from the interrupt context as it sounds like you're already doing. One of the disadvantages to doing this is that your processor will always be in a high power draw state - since you're always running that loop, the processor can never go to sleep. This would actually also be a problem in any of the code you had written however - even an empty infinite while loop will keep the processor running. The solution to this is usually to end your while loop with a series of instructions to put the processor into a low power state (completely architecture dependent) that will wake it when an interrupt comes through to be processed. If there are things happening in the FSM that are not driven by any interrupts, a normally used approach to keep the processor waking up at periodic intervals is to initialize a timer to interrupt on a regular basis to cause your main loop to continue execution.

One other thing to note, if you were previously executing all of your code from the interrupt context - interrupt service routines (ISRs) really should be as short as possible, because they literally "interrupt" the main execution of the program, which may cause unintended side effects if they take too long. A normal way to handle this is to have handlers in your super loop that are just signalled to by the ISR, so that the bulk of whatever processing that needs to be done is done in the main context when there is time, rather than interrupting a potentially time critical section of your main context.

like image 28
Logan Hunter Avatar answered Feb 03 '26 23:02

Logan Hunter



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!