I'm working on a Haskell server using scotty and persistent. Many handlers need access to the database connection pool, so I've taken to passing the pool around throughout the app, in this sort of fashion:
main = do
runNoLoggingT $ withSqlitePool ":memory:" 10 $ \pool ->
liftIO $ scotty 7000 (app pool)
app pool = do
get "/people" $ do
people <- liftIO $ runSqlPool getPeople pool
renderPeople people
get "/foods" $ do
food <- liftIO $ runSqlPool getFoods pool
renderFoods food
where getPeople and getFoods are appropriate persistent database actions that return [Person] and [Food] respectively.
The pattern of calling liftIO and runSqlPool on a pool becomes tiresome after a while - wouldn't it be great if I could refactor them into a single function, like Yesod's runDB, which would just take the query and return the appropriate type. My attempt at writing something like this is:
runDB' :: (MonadIO m) => ConnectionPool -> SqlPersistT IO a -> m a
runDB' pool q = liftIO $ runSqlPool q pool
Now, I can write this:
main = do
runNoLoggingT $ withSqlitePool ":memory:" 10 $ \pool ->
liftIO $ scotty 7000 $ app (runDB' pool)
app runDB = do
get "/people" $ do
people <- runDB getPeople
renderPeople people
get "/foods" $ do
food <- runDB getFoods
renderFoods food
Except that GHC complains:
Couldn't match type `Food' with `Person'
Expected type: persistent-2.1.1.4:Database.Persist.Sql.Types.SqlPersistT
IO
[persistent-2.1.1.4:Database.Persist.Class.PersistEntity.Entity
Person]
Actual type: persistent-2.1.1.4:Database.Persist.Sql.Types.SqlPersistT
IO
[persistent-2.1.1.4:Database.Persist.Class.PersistEntity.Entity
Food]
In the first argument of `runDB', namely `getFoods'
It seems like GHC is saying that in fact the type of runDB becomes specialised somehow. But then how are functions like runSqlPool defined? Its type signature looks similar to mine:
runSqlPool :: MonadBaseControl IO m => SqlPersistT m a -> Pool Connection -> m a
but it can be used with database queries that return many different types, as I was doing originally. I think there's something fundamental I'm misunderstanding about types here, but I have no idea how to find out what it is! Any help would be greatly appreciated.
EDIT:
at Yuras' suggestion, I've added this:
type DBRunner m a = (MonadIO m) => SqlPersistT IO a -> m a
runDB' :: ConnectionPool -> DBRunner m a
app :: forall a. DBRunner ActionM a -> ScottyM ()
which required -XRankNTypes for the typedef. However, the compiler error is still identical.
EDIT:
Victory to the commentors. This allows the code to compile:
app :: (forall a. DBRunner ActionM a) -> ScottyM ()
For which I'm grateful, but still mystified!
The code is currently looking like this and this.
From the point of view of reflection, the difference between a generic type and an ordinary type is that a generic type has associated with it a set of type parameters (if it is a generic type definition) or type arguments (if it is a constructed type). A generic method differs from an ordinary method in the same way.
Typically a generic function is an instance of a class that inherits both from function and standard-object. Thus generic functions are both functions (that can be called with and applied to arguments) and ordinary objects.
Generic methods allow type parameters to be used to express dependencies among the types of one or more arguments to a method and/or its return type. If there isn't such a dependency, a generic method should not be used. It is possible to use both generic methods and wildcards in tandem. Here is the method Collections.
Generic is a class which allows the user to define classes and methods with the placeholder. Generics were added to version 2.0 of the C# language. The basic idea behind using Generic is to allow type (Integer, String, … etc and user-defined types) to be a parameter to methods, classes, and interfaces.
It seems like GHC is saying that in fact the type of runDB becomes specialised somehow.
Your guess is right. Your original type was app :: (MonadIO m) => (SqlPersistT IO a -> m a) -> ScottyM (). This means that your runDB argument of type SqlPersistT IO a -> m a can be used at any one type a. However, the body of app wants to use the runDB argument at two different types (Person and Food) so instead we need to pass an argument that can work for any number of different types in the body. Thus app needs the type
app :: MonadIO m => (forall a. SqlPersistT IO a -> m a) -> ScottyM ()
(I would suggest keeping the MonadIO constraint outside the forall but you can also put it inside.)
EDIT:
What's going on behind the scenes is the following:
(F a -> G a) -> X means forall a. (F a -> G a) -> X, which means /\a -> (F a -> G a) -> X. /\ is the type-level lambda. That is, the caller gets to pass in a single type a and a function of type F a -> G a for that particular choice of a.
(forall a. F a -> G a) -> X means (/\a -> F a -> G a) -> X and the caller has to pass in a function which the callee can specialise to many choices of a.
Lets play the game:
Prelude> let f str = (read str, read str)
Prelude> f "1" :: (Int, Float)
(1,1.0)
Works as expected.
Prelude> let f str = (read1 str, read1 str) where read1 = read
Prelude> f "1" :: (Int, Float)
(1,1.0)
Works too.
Prelude> let f read1 str = (read1 str, read1 str)
Prelude> f read "1" :: (Int, Float)
<interactive>:21:1:
Couldn't match type ‘Int’ with ‘Float’
Expected type: (Int, Float)
Actual type: (Int, Int)
In the expression: f read "1" :: (Int, Float)
In an equation for ‘it’: it = f read "1" :: (Int, Float)
But this doesn't. What the difference?
The last f has the next type:
Prelude> :t f
f :: (t1 -> t) -> t1 -> (t, t)
So it doesn't work for clear reason, both elements of the tuple should have the same type.
The fix is like that:
Prelude> :set -XRankNTypes
Prelude> let f read1 str = (read1 str, read1 str); f :: (Read a1, Read a2) => (forall a . Read a => str -> a) -> str -> (a1, a2)
Prelude> f read "1" :: (Int, Float)
(1,1.0)
Unlikely I can come with good explanation of RankNTypes, so I'd not even try. There is enough resources in web.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With