I am trying to interpolate spectrogram obtained from matplotlib using scipy's inetrp2d function, but somehow fail to get the same spectrogram. The data is available here
The actual spectrogram is:

And interpolated spectrogram is:

The code looks okay, but even then something is wrong. The code used is:
from __future__ import division
from matplotlib import ticker as mtick
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import numpy as np
from bisect import bisect
from scipy import interpolate
from matplotlib.ticker import MaxNLocator
data = np.genfromtxt('spectrogram.dat', skiprows = 2, delimiter = ',')
pressure = data[:, 1] * 0.065
time = data[:, 0]
cax = plt.specgram(pressure * 100000, NFFT = 256, Fs = 50000, noverlap=4, cmap=plt.cm.gist_heat, zorder = 1)
f = interpolate.interp2d(cax[2], cax[1], cax[0], kind='cubic')
xnew = np.linspace(cax[2][0], cax[2][-1], 100)
ynew = np.linspace(cax[1][0], cax[1][-1], 100)
znew = 10 * np.log10(f(xnew, ynew))
fig = plt.figure(figsize=(6, 3.2))
ax = fig.add_subplot(111)
ax.set_title('colorMap')
plt.pcolormesh(xnew, ynew, znew, cmap=plt.cm.gist_heat)
# plt.colorbar()
plt.title('Interpolated spectrogram')
plt.colorbar(orientation='vertical')
plt.savefig('interp_spectrogram.pdf')
How to interpolate a spectrogram correctly with Python?
The key to your solution is in this warning, which you may or may not have seen:
RuntimeWarning: invalid value encountered in log10
znew = 10 * np.log10(f(xnew, ynew))
If your data is actually a power whose log you'd like to view explicitly as decibel power, take the log first, before fitting to the spline:
spectrum, freqs, t, im = cax
dB = 10*np.log10(spectrum)
#f = interpolate.interp2d(t, freqs, dB, kind='cubic') # docs for this recommend next line
f = interpolate.RectBivariateSpline(t, freqs, dB.T) # but this uses xy not ij, hence the .T
xnew = np.linspace(t[0], t[-1], 10*len(t))
ynew = np.linspace(freqs[0], freqs[-1], 10*len(freqs)) # was it wider spaced than freqs on purpose?
znew = f(xnew, ynew).T
Then plotting as you have:

Previous answer:
If you just want to plot on logscale, use matplotlib.colors.LogNorm
znew = f(xnew, ynew) # Don't take the log here
plt.figure(figsize=(6, 3.2))
plt.pcolormesh(xnew, ynew, znew, cmap=plt.cm.gist_heat, norm=colors.LogNorm())
And that looks like this:

Of course that still has gaps where its value is negative when plotted on a log scale. What your data means to you when the value is negative should dictate how you fill this in. One simple solution is to just set those values to the smallest positive value and they'd fill in as black:

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With