I have a project in which I need to have the lowest latency possible (in the 1-100 microseconds range at best) for a communication between a computer (Windows + Linux + MacOSX) and a microcontroller (arduino or stm32 or anything).
I stress that not only it has to be fast, but with low latency (for example a fast communication to the moon will have a low latency).
For the moment the methods I have tried are serial over USB or HID packets over USB. I get results around a little less than a millisecond. My measurement method is a round trip communication, then divide by two. This is OK, but I would be much more happy to have something faster.
EDIT:
The question seems to be quite hard to answer. The best workaround I found is to synchronize clocks of the computer and microcontroler. Synchronization requires communication indeed. With the process below, dt is half a round trip, and sync is the difference between the clocks.
t = time()
write(ACK);
read(remotet)
dt = (time() - t) / 2
sync = time() - remotet - dt
Note that the imprecision of this synchronization is at most dt. The importance of the fastest communication channel stands, but I have an estimation of the precision.
Also note technicalities related to the difference of timestamp on different systems (us/ms based on epoch on Linux, ms/us since the MCU booted on Arduino).
Pay attention to the clock shift on Arduino. It is safer to synchronize often (every measure in my case).
USB Raw HID with hacked 8KHz poll rate (125us poll interval) combined with Teensy 3.2 (or above). Mouse overclockers have achieved 8KHz poll rate with low USB jitter, and Teensy 3.2 (Arduino clone) is able to do 8KHz poll rate with a slightly modified USB FTDI driver on the PC side.
Barring this, and you need even better, you're now looking at PCI-Express parallel ports, to do lower-latency signalling via digital pins directly to pins on the parallel port. They must be true parallel ports, and not through a USB layer. DOS apps on gigahertz-level PCs were tested to get sub-1us ability (1.4Ghz Pentium IV) with parallel port pin signalling, but if you write a virtual device driver, you can probably get sub-100us within Windows.
Use raised priority & critical sections out of the wazoo, preferably a non-garbage-collected language, minimum background apps, and essentially consume 100% of a CPU core on your critical loop, and you can definitely reliably achieve <100us. Not 100% of the time, but certainly in the territory of five-nines (and probably even far better than that). If you can tolerate such aberrations.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With