Is it possible to use SFINAE and std::enable_if to disable a single member function of a template class?
I currently have a code similar to this:
#include <type_traits>
#include <iostream>
#include <cassert>
#include <string>
class Base {
public:
virtual int f() { return 0; }
};
template<typename T>
class Derived : public Base {
private:
T getValue_() { return T(); }
public:
int f() override {
assert((std::is_same<T, int>::value));
T val = getValue_();
//return val; --> not possible if T not convertible to int
return *reinterpret_cast<int*>(&val);
}
};
template<typename T>
class MoreDerived : public Derived<T> {
public:
int f() override { return 2; }
};
int main() {
Derived<int> i;
MoreDerived<std::string> f;
std::cout << f.f() << " " << i.f() << std::endl;
}
Ideally, Derived<T>::f() should be disabled if T != int. Because f is virtual, Derived<T>::f() gets generated for any instantiation of Derived, even if it is never called.
But the code is used such that Derived<T> (with T != int) never gets created only as a base class of MoreDerived<T>.
So the hack in Derived<T>::f() is necessary to make the program compile; the reinterpret_cast line never gets executed.
You could simply specialize f for int:
template<typename T>
class Derived : public Base {
private:
T getValue_() { return T(); }
public:
int f() override {
return Base::f();
}
};
template <>
int Derived<int>::f () {
return getValue_();
}
No you can't rule out a member function with SFINAE. You could do it with specialisation of your Derived class f member function for convertible Ts to int but that would lead to unnecessary duplication of code. In C++17 however you could solve this with use of if constexpr:
template<typename T> class Derived : public Base {
T getValue_() { return T(); }
public:
int f() override {
if constexpr(std::is_convertible<T, int>::value) return getValue_();
return Base::f();
}
};
Live Demo
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With