I want to write an LRU Cache with a memory size limitation rather than the "number of objects" limitation in std. After trying to figure it out for myself, I cheated and looked at an existing implementation, and I almost understand it, but this stops me:
struct KeyRef<K> {
k: *const K,
}
impl<K: Hash> Hash for LruKeyRef<K> {
fn hash<H: Hasher>(&self, state: &mut H) {
unsafe { (*self.k).hash(state) }
}
}
impl<K: PartialEq> PartialEq for LruKeyRef<K> {
fn eq(&self, other: &LruKeyRef<K>) -> bool {
unsafe { (*self.k).eq(&*other.k) }
}
}
It's that last unsafe line that I don't understand. I'm using a HashMap as the underlying structure, the key is stored with the value, and I want the hasher to be able to find it. I make the working hash key a reference to the real key and provide Hash and PartialEq functions such that the HashMap can find and use the key for bucketing purposes. That's easy.
I understand then that I have to compare the two for PartialEq, and so it makes sense to me that I have to use *self.k to dereference the current object, so why &*other.k for the other object? That's what I don't understand. Why isn't it just *other.k? Aren't I just dereferencing both so I can compare the actual keys?
We wish to call PartialEq::eq:
trait PartialEq<Rhs = Self>
where
Rhs: ?Sized,
{
fn eq(&self, other: &Rhs) -> bool;
}
Assuming the default implementation where Rhs = Self and Self = K, we need to end up with two &K types
other.k is of type *const K*other.k is of type K&*other.k is of type &KThis much should hopefully make sense.
self.k is of type *const K*self.k is of type KThe piece that's missing that that method calls are allowed to automatically reference the value they are called on. This is why there's no distinct syntax for a reference and a value, as there would be in C or C++ (foo.bar() vs foo->bar()).
Thus, the K is automatically referenced to get &K, fulfilling the signature.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With