Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Unknown regularizer: L2 in tensorflowjs

I have trained a model in python using model

reg = 0.000001
model = Sequential()
model.add(Dense(24, activation='tanh', name='input_dense', input_shape=input_shape))
model.add(GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), reset_after=False))
model.add(Flatten())
model.add(Dense(2, activation='softmax'))

But when I converted this model using "tensorflowjs_converter --input_format keras" and loaded in browser getting error

Unhandled Rejection (Error): Unknown regularizer: L2. This may be due to one of the following reasons:

  1. The regularizer is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
  2. The custom regularizer is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().

The model.json file content is

{
 "format": "layers-model",
 "generatedBy": "keras v2.4.0",
 "convertedBy": "TensorFlow.js Converter v2.3.0",
 "modelTopology": {
  "keras_version": "2.4.0",
  "backend": "tensorflow",
  "model_config": {
   "class_name": "Sequential",
   "config": {
    "name": "sequential",
    "layers": [
     {
      "class_name": "InputLayer",
      "config": {
       "batch_input_shape": [null, 22, 13],
       "dtype": "float32",
       "sparse": false,
       "ragged": false,
       "name": "input_dense_input"
      }
     },
     {
      "class_name": "Dense",
      "config": {
       "name": "input_dense",
       "trainable": true,
       "batch_input_shape": [null, 22, 13],
       "dtype": "float32",
       "units": 24,
       "activation": "tanh",
       "use_bias": true,
       "kernel_initializer": {
        "class_name": "GlorotUniform",
        "config": { "seed": null }
       },
       "bias_initializer": { "class_name": "Zeros", "config": {} },
       "kernel_regularizer": null,
       "bias_regularizer": null,
       "activity_regularizer": null,
       "kernel_constraint": null,
       "bias_constraint": null
      }
     },
     {
      "class_name": "GRU",
      "config": {
       "name": "gru",
       "trainable": true,
       "dtype": "float32",
       "return_sequences": true,
       "return_state": false,
       "go_backwards": false,
       "stateful": false,
       "unroll": false,
       "time_major": false,
       "units": 24,
       "activation": "tanh",
       "recurrent_activation": "sigmoid",
       "use_bias": true,
       "kernel_initializer": {
        "class_name": "GlorotUniform",
        "config": { "seed": null }
       },
       "recurrent_initializer": {
        "class_name": "Orthogonal",
        "config": { "gain": 1.0, "seed": null }
       },
       "bias_initializer": { "class_name": "Zeros", "config": {} },
       "kernel_regularizer": {
        "class_name": "L2",
        "config": { "l2": 9.999999974752427e-7 }
       },
       "recurrent_regularizer": {
        "class_name": "L2",
        "config": { "l2": 9.999999974752427e-7 }
       },
       "bias_regularizer": null,
       "activity_regularizer": null,
       "kernel_constraint": null,
       "recurrent_constraint": null,
       "bias_constraint": null,
       "dropout": 0.0,
       "recurrent_dropout": 0.0,
       "implementation": 2,
       "reset_after": false
      }
     },
     {
      "class_name": "Flatten",
      "config": {
       "name": "flatten",
       "trainable": true,
       "dtype": "float32",
       "data_format": "channels_last"
      }
     },
     {
      "class_name": "Dense",
      "config": {
       "name": "dense",
       "trainable": true,
       "dtype": "float32",
       "units": 2,
       "activation": "softmax",
       "use_bias": true,
       "kernel_initializer": {
        "class_name": "GlorotUniform",
        "config": { "seed": null }
       },
       "bias_initializer": { "class_name": "Zeros", "config": {} },
       "kernel_regularizer": null,
       "bias_regularizer": null,
       "activity_regularizer": null,
       "kernel_constraint": null,
       "bias_constraint": null
      }
     }
    ]
   }
  },
  "training_config": {
   "loss": "categorical_crossentropy",
   "metrics": ["accuracy"],
   "weighted_metrics": null,
   "loss_weights": null,
   "optimizer_config": {
    "class_name": "Nadam",
    "config": {
     "name": "Nadam",
     "learning_rate": 0.0020000000949949026,
     "decay": 0.004000000189989805,
     "beta_1": 0.8999999761581421,
     "beta_2": 0.9990000128746033,
     "epsilon": 1e-7
    }
   }
  }
 },
 "weightsManifest": [
  {
   "paths": ["group1-shard1of1.bin"],
   "weights": [
    { "name": "dense/kernel", "shape": [528, 2], "dtype": "float32" },
    { "name": "dense/bias", "shape": [2], "dtype": "float32" },
    { "name": "gru/gru_cell/kernel", "shape": [24, 72], "dtype": "float32" },
    {
     "name": "gru/gru_cell/recurrent_kernel",
     "shape": [24, 72],
     "dtype": "float32"
    },
    { "name": "gru/gru_cell/bias", "shape": [72], "dtype": "float32" },
    { "name": "input_dense/kernel", "shape": [13, 24], "dtype": "float32" },
    { "name": "input_dense/bias", "shape": [24], "dtype": "float32" }
   ]
  }
 ]
}
like image 768
Masthan Avatar asked Oct 29 '25 04:10

Masthan


1 Answers

Option 1

There are no classes L1 and L2; they are just interfaces(more here)

There is a class L1L2 which will take the config and return the right regularizer. You can manually replace all occurences of L2 to L1L2.

Option 2

Register a class L2

class L2 {

    static className = 'L2';

    constructor(config) {
       return tf.regularizers.l1l2(config)
    }
}
tf.serialization.registerClass(L2);

// now load the model
like image 144
edkeveked Avatar answered Oct 30 '25 19:10

edkeveked



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!