I'm working on the analysis of a particle's trajectory in a 2D plane. This trajectory typically consists of 5 to 50 (in rare cases more) points (discrete integer coordinates). I have already matched the points of my dataset to form a trajectory (thus I have time resolution).
I'd like to perform some analysis on the curvature of this trajectory, unfortunately the analysis framework I'm using has no support for fitting a trajectory. From what I heard one can use splines/bezier curves for getting this done but I'd like your opinion and/or suggestions what to use.
As this is only an optional part of my work I can not invest a vast amount of time for implementing a solution on my own or understanding a complex framework. The solution has to be as simple as possible.
Let me specify the features I need from a possible library:
- create trajectory from varying number of points
- as the points are discrete it should interpolate their position; no need for exact matches for all points as long as the resulting distance between trajectory and point is less than a threshold
- it is essential that the library can yield the derivative of the trajectory for any given point
- it would be beneficial if the library could report a quality level (like chiSquare for fits) of the interpolation
EDIT: After reading the comments I'd like to add some more:
It is not necessary that the trajectory exactly matches the points. The points are created from values of a pixel matrix and thus they form a discrete matrix of coordinates with a space resolution limited by the number of pixel per given distance. Therefore the points (which are placed at the center of the firing pixel) do not (exactly) match the actual trajectory of the particle. Either interpolation or fit is fine for me as long as the solution can cope with a trajectory which may/most probably will be neither bijective nor injective.
Thus most traditional fit approaches (like fitting with polynomials or exponential functions using a least squares fit) can't fulfil my criterias.
Additionaly all traditional fit approaches I have tried yield a function which seems to describe the trajectory quite well but when looking at their first derivative (or at higher resolution) one can find numerous "micro-oscillations" which (from my interpretation) are a result of fitting non-straight functions to (nearly) straight parts of the trajectory.
Edit2: There has been some discussion in the comments, what those trajectories may look like. Essentially thay may have any shape, length and "curlyness", although I try to exclude trajectories which overlap or cross in the previous steps. I have included two examples below; ignore the colored boxes, they're just a representation of the values of the raw pixel matrix. The black, circular dots are the points which I'd like to match to a trajectory, as you can see they are always centered to the pixels and therefore may have only discrete (integer) values.

Thanks in advance for any help & contribution!
This MIGHT be the way to go
http://alglib.codeplex.com/
From your description I would say that a parametric spline interpolation may suit your requirements. I have not used the above library myself, but it does have support for spline interpolation. Using an interpolant means you will not have to worry about goodness of fit - the curve will pass through every point that you give it.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With