Suppose I have a data model that runs daily and the sample HDFS path is
data_model/sales_summary/grass_date=2021-04-01
If I want to read all the models in Feb and March, what is the difference if I read in the following two ways:
A:
spark.read.parquet('data_model/sales_summary/grass_date=2021-0{2,3}*')
B:
spark.read.parquet('data_model/sales_summary/').filter(col('grass_date').between('2021-02-01', '2021-03-30'))
Are these two reading methods equivalent? If not, under what circumstances which one can be more efficient?
Spark will do a partition filter when reading the files, so the performance of the two methods should be similar. The query plans below show how the partition filters are used in the filescan operation.
spark.read.parquet('data_model/sales_summary/grass_date=2021-0{2,3}*').explain()
== Physical Plan ==
*(1) ColumnarToRow
+- FileScan parquet [id#18] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/tmp/data_model/sales_summary/grass_date=2021-02-21, file:/tmp/data_model/..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<id:int>
spark.read.parquet('data_model/sales_summary/').filter(F.col('grass_date').between('2021-02-01', '2021-03-30')).explain()
== Physical Plan ==
*(1) ColumnarToRow
+- FileScan parquet [id#24,grass_date#25] Batched: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex[file:/tmp/data_model/sales_summary], PartitionFilters: [isnotnull(grass_date#25), (grass_date#25 >= 18659), (grass_date#25 <= 18716)], PushedFilters: [], ReadSchema: struct<id:int>
But note that the partitioning column will be missing from the dataframe if you use the first method to read the files, so you'd probably prefer the second method.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With