Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Subset data to contain only columns whose names match a condition

Tags:

r

subset

People also ask

How do I select multiple columns by name in R?

To pick out single or multiple columns use the select() function. The select() function expects a dataframe as it's first input ('argument', in R language), followed by the names of the columns you want to extract with a comma between each name.


Try grepl on the names of your data.frame. grepl matches a regular expression to a target and returns TRUE if a match is found and FALSE otherwise. The function is vectorised so you can pass a vector of strings to match and you will get a vector of boolean values returned.

Example

#  Data
df <- data.frame( ABC_1 = runif(3),
            ABC_2 = runif(3),
            XYZ_1 = runif(3),
            XYZ_2 = runif(3) )

#      ABC_1     ABC_2     XYZ_1     XYZ_2
#1 0.3792645 0.3614199 0.9793573 0.7139381
#2 0.1313246 0.9746691 0.7276705 0.0126057
#3 0.7282680 0.6518444 0.9531389 0.9673290

#  Use grepl
df[ , grepl( "ABC" , names( df ) ) ]
#      ABC_1     ABC_2
#1 0.3792645 0.3614199
#2 0.1313246 0.9746691
#3 0.7282680 0.6518444

#  grepl returns logical vector like this which is what we use to subset columns
grepl( "ABC" , names( df ) )
#[1]  TRUE  TRUE FALSE FALSE

To answer the second part, I'd make the subset data.frame and then make a vector that indexes the rows to keep (a logical vector) like this...

set.seed(1)
df <- data.frame( ABC_1 = sample(0:1,3,repl = TRUE),
            ABC_2 = sample(0:1,3,repl = TRUE),
            XYZ_1 = sample(0:1,3,repl = TRUE),
            XYZ_2 = sample(0:1,3,repl = TRUE) )

# We will want to discard the second row because 'all' ABC values are 0:
#  ABC_1 ABC_2 XYZ_1 XYZ_2
#1     0     1     1     0
#2     0     0     1     0
#3     1     1     1     0


df1 <- df[ , grepl( "ABC" , names( df ) ) ]

ind <- apply( df1 , 1 , function(x) any( x > 0 ) )

df1[ ind , ]
#  ABC_1 ABC_2
#1     0     1
#3     1     1

You can also use starts_with and dplyr's select() like so:

df <- df %>% dplyr:: select(starts_with("ABC"))

Just in case for data.table users, the following works for me:

df[, grep("ABC", names(df)), with = FALSE]

Using dplyr you can:

df <- df %>% dplyr:: select(grep("ABC", names(df)), grep("XYZ", names(df)))

This worked for me:

df[,names(df) %in% colnames(df)[grepl(str,colnames(df))]]

Simplest solution, given to me by my statistics professor:

df[,grep("pattern", colnames(df))]

That's it. It doesn't give you booleans or anything, it just gives you your dataset that follows that pattern.


Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!