I have grayscale image whose background is, on a 0-255 color scale, a mid-white color with an average pixel color value of 246; the foreground is mid-grey with an average pixel-color value of 186.
I would like to 'shift' every pixel above 246 to 255, every pixel below 186 to zero, and 'stretch' everything between. Is there any ready-made algorithm/process to do this in numpy or python, or must the new levels/histogram be calculated 'manually' (as I have done thus far)?
This is the equivalent of, in Gimp or Photoshop, opening the levels window and selecting, with the white and black eyedropper respectively, a light region we want to make white and a darker region we want to make black: the application modifies the levels/histogram ('stretches' the values between the points selected) accordingly.
Some images of what I'm attempting:

Here's one way -
def stretch(a, lower_thresh, upper_thresh):
r = 255.0/(upper_thresh-lower_thresh+2) # unit of stretching
out = np.round(r*(a-lower_thresh+1)).astype(a.dtype) # stretched values
out[a<lower_thresh] = 0
out[a>upper_thresh] = 255
return out
As per OP, the criteria set was :
'shift' every pixel above 246 to 255, hence 247 and above should become 255.
every pixel below 186 to zero, hence 185 and below should become 0.
Hence, based on above mentioned two requirements, 186 should become something greater than 0 and so on, until 246 which should be lesser than 255.
Alternatively, we can also use np.where to make it a bit more compact -
def stretch(a, lower_thresh, upper_thresh):
r = 255.0/(upper_thresh-lower_thresh+2) # unit of stretching
out = np.round(r*np.where(a>=lower_thresh,a-lower_thresh+1,0)).clip(max=255)
return out.astype(a.dtype)
Sample run -
# check out first row input, output for variations
In [216]: a
Out[216]:
array([[186, 187, 188, 246, 247],
[251, 195, 103, 9, 211],
[ 21, 242, 36, 87, 70]], dtype=uint8)
In [217]: stretch(a, lower_thresh=186, upper_thresh=246)
Out[217]:
array([[ 4, 8, 12, 251, 255],
[255, 41, 0, 0, 107],
[ 0, 234, 0, 0, 0]], dtype=uint8)
If your picture is uint8 and typical picture size, one efficient method is setting up a lookup table:
L, H = 186, 246
lut = np.r_[0:0:(L-1)*1j, 0.5:255.5:(H-L+3)*1j, 255:255:(255-H-1)*1j].astype('u1')
# example
from scipy.misc import face
f = face()
rescaled = lut[f]
For smaller images it is faster (on my setup it crosses over at around 100,000 gray scale pixels) to transform directly:
fsmall = (f[::16, ::16].sum(2)//3).astype('u1')
slope = 255/(H-L+2)
rescaled = ((1-L+0.5/slope+fsmall)*slope).clip(0, 255).astype('u1')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With