I am using the following code:
df = pd.read_csv('/Python Test/AcquirerRussell3000.csv')
I have the following type of data:
18.07.2000 27.1875 0 08.08.2000 25.3125 0.1 05.09.2000 \
0 19.07.00 26.6250 -0.020690 09.08.00 25.2344 -0.003085 06.09.00
1 20.07.00 26.6250 0.000000 10.08.00 25.1406 -0.003717 07.09.00
2 21.07.00 25.6875 -0.035211 11.08.00 25.5781 0.017402 08.09.00
3 24.07.00 26.2500 0.021898 14.08.00 25.4375 -0.005497 11.09.00
4 25.07.00 26.6875 0.016667 15.08.00 25.5625 0.004914 12.09.00
I am getting the following error:
Pythone Test/untitled0.py:1: DtypeWarning: Columns (long list of numbers) have mixed types.
Specify dtype option on import or set low_memory=False.
So every 3rd column is a date the rest are numbers. I guess there is no single dtype since dates are strings and the rest is a float or int? I have about 5000 columns or more and around 400 rows.
I have seen similar questions to this but dont quite know how to apply this to my data. Furthermore I want to run the following code after to stack the data frame.
a = np.arange(len(df.columns))
df.columns = [a % 3, a // 3]
df = df.stack().reset_index(drop=True)
df.to_csv('AcquirerRussell3000stacked.csv', sep=',')
What dtype should I use? Or should I just set low_memory to false?
This solved my problem from here
dashboard_df = pd.read_csv(p_file, sep=',', error_bad_lines=False, index_col=False, dtype='unicode')
Could anyone explain this answer to me tough?
df = pd.read_csv('/Python Test/AcquirerRussell3000.csv', engine='python')
or
df = pd.read_csv('/Python Test/AcquirerRussell3000.csv', low_memory=False)
does the trick for me.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With