Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Sort pandas dataframe by multiple columns using custom compare functions

I want to sort a pandas dataframe with respect to multiple columns, where for some of the columns ("col2" and "col3") I want to use this custom defined compare function that takes two elements:

example:

>>> df = pd.DataFrame({"col1": [1,2,3], "col2": [[2], [], [1]], "col3": [[1,0,1], [2,2,2], [3]]})

>>> df
   col1 col2       col3
0     1  [2]  [1, 0, 1]
1     2   []  [2, 2, 2]
2     3  [1]        [3]
def compare_fn(l1, l2): #list 1 and list 2 
    if len(l1) < len(l2):
        return -1 # l1 is of smaller value than l2
    if len(l1) > len(l2):
        return 1 # l2 is of smaller value than l1
    else:
        for i in range(len(l1)):
            if l1[i] < l2[i]:
                return -1
            elif l1[i] > l2[i]:
                return 1
    return 0 # l1 and l2 have same value

now, I would like to sort with respect to all 3 columns, where in col2 and col3 the function used to compare two elements that I want used is my custom defined function. (for col1 it's a straightforward sort).

I tried:

df.sort_values(["col1", "col2", "col3"], key=[None, compare_fn, compare_fn]), this returns a 'list' object is not callable error.

from functools import cmp_to_key; df.sort_values(["col1", "col2", "col3"], key=[None, cmp_to_key(compare_fn), cmp_to_key(compare_fn)]), this returns a 'list' object is not callable error.

I even tried disregarding the first column all together and passing one argument to the key: df[["col2", "col3"]].sort_values(["col2", "col3"], key=cmp_to_key(compare_fn)) returns TypeError: object of type 'functools.KeyWrapper' has no len()

and

df[["col2", "col3"]].sort_values(["col2", "col3"], key=compare_fn) returns TypeError: compare_fn() missing 1 required positional argument: 'l2'.

So i know that at least one of my problems is not knowing how to use a two-element compare function for sorting a pandas DataFrame column.

like image 687
WalksB Avatar asked Sep 01 '25 03:09

WalksB


1 Answers

Your key function needs to take the whole series as the input.

Rewrite your function like this:

def compare_fn(l): #list 1 and list 2 
    return [(len(x), tuple(x)) for x in l]

(df.sort_values('col1')
   .sort_values(['col2','col3'], 
                key=compare_fn, kind='mergesort')
)

Output:

   col1 col2       col3
1     2   []  [2, 2, 2]
2     3  [1]        [3]
0     1  [2]  [1, 0, 1]

Update Also we can rewrite the function so as it works for other columns:

def compare_fn(l): #list 1 and list 2 
    return ([(len(x), tuple(x)) for x in l]
                if type(l[0]) == list       # case list
                else l                      # case integer
           )

df.sort_values(['col1','col2','col3'], key=compare_fn)
like image 79
Quang Hoang Avatar answered Sep 02 '25 16:09

Quang Hoang