Given a dataframe with 2 columns, id and value, I want to transform it into a dataframe with more columns containing the id and the quantiles from the column value: q0, q25, q50, q75, q100.
I do not know how to separate a column containing a list into more columns containing its values. Of course, all the lists have the same length.
Here is an example:
library(dplyr)
library(tidyr)
set.seed(0)
df <- data.frame(id = rep(c("Alice", "Bob"), each = 10),
value = round(rnorm(20) * 10))
> df
id value
1 Alice 13
2 Alice -3
3 Alice 13
4 Alice 13
5 Alice 4
6 Alice -15
7 Alice -9
8 Alice -3
9 Alice 0
10 Alice 24
11 Bob 8
12 Bob -8
13 Bob -11
14 Bob -3
15 Bob -3
16 Bob -4
17 Bob 3
18 Bob -9
19 Bob 4
20 Bob -12
df_quantiles <- df %>%
group_by(id) %>%
summarise( quantiles = list(quantile(value))) %>%
ungroup()
> df_quantiles
# A tibble: 2 x 2
id quantiles
1 Alice
2 Bob
> df_quantiles$quantiles
[[1]]
0% 25% 50% 75% 100%
-15 -3 2 13 24
[[2]]
0% 25% 50% 75% 100%
-12.00 -8.75 -3.50 1.50 8.00
The next command doesn't do the work. Can you please help me with the good separate call? Is there any other method to get the result?
> df_quantiles %>%
+ separate(quantiles, paste0("q", seq(0,5)))
# A tibble: 2 x 7
id q0 q1 q2 q3 q4 q5
*
1 Alice c 15 3 2 13 24
2 Bob c 12 8 75 3 5
Warning message:
Too many values at 2 locations: 1, 2
What I expect is this dataframe:
id q0% q25% q50% q75% q100%
1 Alice -15 -3 2 13 24
2 Bob -12.00 -8.75 -3.50 1.50 8.00
How about
cbind.data.frame(id=unique(df$id), do.call(rbind, df_quantiles$quantiles))
with output
id 0% 25% 50% 75% 100%
1 Alice -15 -3.00 2.0 13.0 24
2 Bob -12 -8.75 -3.5 1.5 8
A combination of list, as_tibble from tibble, as.list and unnest from tidyr does the job
library(tidyverse)
df_quantiles <- df %>%
group_by(id) %>%
summarise(quantiles = list(as_tibble(as.list(quantile(value))))) %>% unnest() %>%
ungroup()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With