I am trying to obtain a list of columns in a DataFrame if any value in a column contains a string. For example in the below dataframe I would like a list of columns that have the % in the string. I am able to accomplish this using a for loop and the series.str.contains method but doens't seem optimal especially with a larger dataset. Is there a more efficient way to do this?
import pandas as pd
df = pd.DataFrame({'A': {0: '2019-06-01', 1: '2019-06-01', 2: '2019-06-01'},
'B': {0: '10', 1: '20', 2: '30'},
'C': {0: '10', 1: '20%', 2: '30%'},
'D': {0: '10%', 1: '20%', 2: '30'},
})
A B C D
0 2019-06-01 10 10 10%
1 2019-06-01 20 20% 20%
2 2019-06-01 30 30% 30
col_list = []
for col in df.columns:
if (True in list(df[col].str.contains('%'))) is True:
col_list.append(col)
['C', 'D']
stack with any
df.columns[df.stack().str.contains('%').any(level=1)]
Index(['C', 'D'], dtype='object')
[c for c in df if df[c].str.contains('%').any()]
['C', 'D']
filter[*filter(lambda c: df[c].str.contains('%').any(), df)]
['C', 'D']
find
from numpy.core.defchararray import find
df.columns[(find(df.to_numpy().astype(str), '%') >= 0).any(0)]
Index(['C', 'D'], dtype='object')
First use DataFrame.select_dtypes for filter only object columns, obviously string columns.
Then use DataFrame.applymap for elementwise check values with DataFrame.any for return True if at least one per column, so possible filter columns:
c = df.columns[df.select_dtypes(object).applymap(lambda x: '%' in str(x)).any()].tolist()
print (c)
['C', 'D']
Or use Series.str.contains per columns, na parameter should be omit if all strings columns:
f = lambda x: x.str.contains('%', na=False)
c = df.columns[df.select_dtypes(object).apply(f).any()].tolist()
print (c)
['C', 'D']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With