I have a dataframe daily
that looks like this
import pandas as pd
daily
time_stamp 22 72 79 86 87 88 90
2013-10-01 0.000000 0.000 8.128000 0.254 0.000000 0.000000 0.000000
2013-10-01 0.000000 0.000 8.128000 0.254 0.000000 0.000000 0.000000
2013-10-02 0.000000 0.000 0.000000 0.000 0.000000 0.000000 0.000000
2013-10-04 0.000000 0.000 0.000000 0.000 2.540000 0.762000 0.000000
2013-10-08 2.286000 0.000 0.000000 1.016 1.016000 0.254000 0.000000
2013-10-11 2.794000 0.000 0.000000 0.000 3.810000 1.016000 0.762000
2013-10-12 1.524000 0.000 0.000000 2.286 5.588000 0.254000 26.41600
2013-10-13 0.762000 0.000 8.890000 0.000 2.540000 1.270000 4.572000
2013-10-14 1.524000 0.000 0.000000 0.000 2.540000 4.064000 0.000000
2013-10-15 0.000000 0.000 0.000000 0.000 0.000000 0.000000 0.000000
2013-10-16 0.000000 3.810 1.524000 3.048 0.508000 0.762000 5.080000
2013-10-17 0.000000 0.000 0.254000 0.000 0.000000 0.000000 0.508000
2013-10-18 8.128000 0.762 4.826000 0.508 7.366000 4.572000 1.524000
2013-10-19 8.382000 0.254 0.000000 0.000 6.858000 16.510000 2.032000
2013-10-20 0.000000 0.000 0.000000 0.000 4.064000 5.842000 0.000000
2013-10-21 0.000000 0.508 0.000000 0.000 1.016000 0.000000 0.000000
2013-10-22 2.794000 2.540 1.016000 0.000 0.508000 15.748000 0.000000
And I want to do summary statistics so describe()
on the values greater than 0.
The problem is if I use the commands dailyrf = daily[(daily > 0.).any(1)]
the rows with zeroes are still included when I do dailyrf.describe()
. Alternatively, when I do dailyrf = daily[(daily > 0.).all(1)]
it only returns rows that have >0 values in all the rows.
I also tried daily[daily==0] = 'NaN'
which gave me a warning message: "A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy This is separate from the ipykernel package so we can avoid doing imports until".
And this isn't a solution either because the describe
function returns this:
22 72 79 86 87 88 90 93 95 96 97
count 720 684 721 719 718 720 720 721 720 720 719
unique 103 80 73 64 80 108 112 108 86 113 98
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq 470 494 560 510 539 483 486 441 570 474 476
What I really want is mean, standard deviation, etc. for all the values greater than 0 in each column.
This should be pretty simple using mask
.
df.mask(df == 0).describe()
22 72 79 86 87 88 90
count 8.000000 5.000000 7.000000 6.000000 12.000000 11.000000 7.00000
mean 3.524250 1.574800 4.680857 1.227667 3.196167 4.641273 5.84200
std 3.000573 1.538745 3.752722 1.174092 2.391229 5.992560 9.24574
min 0.762000 0.254000 0.254000 0.254000 0.508000 0.254000 0.50800
25% 1.524000 0.508000 1.270000 0.317500 1.016000 0.762000 1.14300
50% 2.540000 0.762000 4.826000 0.762000 2.540000 1.270000 2.03200
75% 4.127500 2.540000 8.128000 1.968500 4.445000 5.207000 4.82600
max 8.382000 3.810000 8.890000 3.048000 7.366000 16.510000 26.41600
All values satisfying df == 0
are masked, and describe
will not take these into account when calculating stats.
To fix your code notice NaN!='NaN'
df[df==0] = np.nan
df.describe()
Out[696]:
22 72 79 86 87 88 90
count 8.000000 5.000000 7.000000 6.000000 12.000000 11.000000 7.00000
mean 3.524250 1.574800 4.680857 1.227667 3.196167 4.641273 5.84200
std 3.000573 1.538745 3.752722 1.174092 2.391229 5.992560 9.24574
min 0.762000 0.254000 0.254000 0.254000 0.508000 0.254000 0.50800
25% 1.524000 0.508000 1.270000 0.317500 1.016000 0.762000 1.14300
50% 2.540000 0.762000 4.826000 0.762000 2.540000 1.270000 2.03200
75% 4.127500 2.540000 8.128000 1.968500 4.445000 5.207000 4.82600
max 8.382000 3.810000 8.890000 3.048000 7.366000 16.510000 26.41600
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With