Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

rotating data in pandas MultiIndex dataframe

I have a MultiIndex dataframe looks like, this is only partial. The Year range frome 2007 to 2015 with the same places for each year.

                Jan   Feb   Mar   Apr   May  June  July   Aug  Sept   Oct  \
Year Place                                                                     
2007 Johore       1.26  1.07  1.21  1.27  1.33  1.28  1.67  1.88  1.89  1.86   
     Kedah        1.20  1.27  1.50  1.38  1.38  1.52  1.84  2.09  2.08  2.02   
     Kelantan     0.92  0.90  1.01  1.10  1.07  0.87  0.93  1.02  1.08  1.17   
     Malacca      1.62  1.45  1.64  1.52  1.50  1.40  1.75  1.80  2.03  2.14   
     N. Sembilan  0.98  0.94  1.11  1.07  1.10  1.16  1.46  1.58  1.61  1.71   

                   Nov   Dec  
Year Place                    
2007 Johore       1.95  1.72  
     Kedah        1.79  1.39  
     Kelantan     1.29  0.97  
     Malacca      2.44  2.13  
     N. Sembilan  1.75  1.58  

I want to rotate the data and get a single index dataframe with the index being months (e.g. 2007-Jan,2007-Feb ) and the columns being different places.

I tried 'Pahang' as an example and did:

In [14]:

Pahang=df.xs('Pahang',level='Place')
In [15]:

Pahang.unstack().unstack().unstack()
Out[15]:
Year      
2007  Jan     1.19
      Feb     1.01
      Mar     1.13
      Apr     1.19
      May     1.24
      June    1.17
      July    1.43
      Aug     1.59
      Sept    1.63
      Oct     1.64
      Nov     1.82
      Dec     1.31
2008  Jan     1.57
      Feb     1.36
      Mar     1.56
...
2014  Oct     1.87
      Nov     1.74
      Dec     1.09
2015  Jan     0.93
      Feb     1.02
      Mar     1.28
      Apr     1.51
      May      NaN
      June     NaN
      July     NaN
      Aug      NaN
      Sept     NaN
      Oct      NaN
      Nov      NaN
      Dec      NaN
Length: 108, dtype: float64

I get the Pahang column as I want. Instead of doing it one place at a time, I am wondering if there is a way to loop through all places in a faster way. Thanks!

like image 240
STORMHOLD Avatar asked Nov 17 '25 18:11

STORMHOLD


1 Answers

You can do the reshaping for all Places and then select just one of them.

import pandas as pd
import numpy as np

# your data
# ===================================
multi_index = pd.MultiIndex.from_product([np.arange(2007,2016,1), 'A B C D E'.split()], names=['Year', 'Place'])
df = pd.DataFrame( np.random.randn(45,12), columns='Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec'.split(), index=multi_index)

df


               Jan     Feb     Mar   ...       Oct     Nov     Dec
Year Place                           ...                          
2007 A     -0.1512  0.7274 -0.3218   ...    1.2547 -1.8408  1.2585
     B      0.0856 -1.0458 -1.1428   ...    1.0194  1.1958  0.4905
     C     -1.2021 -0.6989 -0.0486   ...   -0.8053 -0.4929  1.6475
     D     -1.9948 -0.3465  1.3036   ...   -0.2490  0.6285 -0.0568
     E      0.0928 -1.3905  0.7203   ...   -0.1138  2.9552 -0.0272
2008 A     -1.2595  1.3072  0.6121   ...   -1.4275  0.8769  2.0671
     B      0.3611 -0.4187 -2.9609   ...   -1.2944  1.2752 -0.0947
     C      1.6492  0.0340 -0.9743   ...    0.0550  1.4135  0.8862
     D      0.9034 -0.2957  0.2152   ...    1.0947 -0.2405  0.0367
     E      0.9566  1.1927  0.0852   ...    0.7396  0.8240 -1.6628
...            ...     ...     ...   ...       ...     ...     ...
2014 A      0.7478 -0.8905  0.6238   ...   -1.0907 -0.2919  0.3261
     B      3.6764 -0.0601  1.2751   ...    0.3294 -1.3375 -1.5087
     C      2.3460 -0.4181  0.0607   ...   -0.8270  0.0536 -0.4353
     D      0.9733 -0.6863  0.5278   ...   -1.8206  0.4788  1.1438
     E     -0.3514  2.4570 -0.8567   ...    1.3434 -1.5634 -0.9984
2015 A      1.2849 -1.0657 -0.1173   ...   -0.1733  0.0441  0.0922
     B      0.5802 -0.5912  1.1193   ...   -0.1296 -0.6374 -1.7727
     C     -0.5026 -1.3111 -0.5499   ...    0.7308  1.2570  0.8733
     D     -1.6482 -0.2213  0.3336   ...   -1.3141 -2.0377 -1.1468
     E     -2.0796 -0.2808 -1.4079   ...   -0.3052  0.7999  0.3516

[45 rows x 12 columns]

# processing
# ==================================
res = df.stack().unstack(level='Place')

Place           A       B       C       D       E
Year                                             
2007 Jan  -0.1512  0.0856 -1.2021 -1.9948  0.0928
     Feb   0.7274 -1.0458 -0.6989 -0.3465 -1.3905
     Mar  -0.3218 -1.1428 -0.0486  1.3036  0.7203
     Apr  -1.4641  2.0384  0.6518  0.8756 -1.4627
     May  -0.8896 -1.6627  0.6990  0.2008  0.7423
     June -0.5339 -0.6629  0.1121  0.3618  1.3838
     July -0.4851  0.6544  0.5251  0.3394 -0.7016
     Aug  -1.2445  0.9671 -1.0684 -0.4776 -0.2936
     Sept  1.1330 -0.7543  1.6029  0.5543  0.3234
     Oct   1.2547  1.0194 -0.8053 -0.2490 -0.1138
...           ...     ...     ...     ...     ...
2015 Mar  -0.1173  1.1193 -0.5499  0.3336 -1.4079
     Apr  -1.0528  0.2421  0.3419 -2.1137 -0.2836
     May  -1.0709 -0.1794 -0.2682 -0.3226  0.8654
     June -1.4538 -0.7313  0.3177 -1.4008  1.1357
     July -1.6210 -0.3815 -0.9876  0.1019  1.7450
     Aug   0.5692  0.7679  1.1893 -0.9612  0.0903
     Sept  0.2371  0.6740  0.9204 -0.2909 -0.8197
     Oct  -0.1733 -0.1296  0.7308 -1.3141 -0.3052
     Nov   0.0441 -0.6374  1.2570 -2.0377  0.7999
     Dec   0.0922 -1.7727  0.8733 -1.1468  0.3516

[108 rows x 5 columns]


# select one place
res['A']

Year      
2007  Jan    -0.1512
      Feb     0.7274
      Mar    -0.3218
      Apr    -1.4641
      May    -0.8896
      June   -0.5339
      July   -0.4851
      Aug    -1.2445
      Sept    1.1330
      Oct     1.2547
               ...  
2015  Mar    -0.1173
      Apr    -1.0528
      May    -1.0709
      June   -1.4538
      July   -1.6210
      Aug     0.5692
      Sept    0.2371
      Oct    -0.1733
      Nov     0.0441
      Dec     0.0922
Name: A, dtype: float64
like image 56
Jianxun Li Avatar answered Nov 20 '25 09:11

Jianxun Li



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!