Hi all I have the following dataframe:
A | B | C
1 2 3
2 3 4
3 4 5
4 5 6
And I am trying to only repeat the last two rows of the data so that it looks like this:
A | B | C
1 2 3
2 3 4
3 4 5
3 4 5
4 5 6
4 5 6
I have tried using append, concat and repeat to no avail.
repeated = lambda x:x.repeat(2)
df.append(df[-2:].apply(repeated),ignore_index=True)
This returns the following dataframe, which is incorrect:
A | B | C
1 2 3
2 3 4
3 4 5
4 5 6
3 4 5
3 4 5
4 5 6
4 5 6
You can use numpy.repeat for repeating index and then create df1 by loc, last append to original, but before filter out last 2 rows by iloc:
df1 = df.loc[np.repeat(df.index[-2:].values, 2)]
print (df1)
A B C
2 3 4 5
2 3 4 5
3 4 5 6
3 4 5 6
print (df.iloc[:-2])
A B C
0 1 2 3
1 2 3 4
df = df.iloc[:-2].append(df1,ignore_index=True)
print (df)
A B C
0 1 2 3
1 2 3 4
2 3 4 5
3 3 4 5
4 4 5 6
5 4 5 6
If want use your code add iloc for filtering only last 2 rows:
repeated = lambda x:x.repeat(2)
df = df.iloc[:-2].append(df.iloc[-2:].apply(repeated),ignore_index=True)
print (df)
A B C
0 1 2 3
1 2 3 4
2 3 4 5
3 3 4 5
4 4 5 6
5 4 5 6
Use pd.concat and index slicing with .iloc:
pd.concat([df,df.iloc[-2:]]).sort_values(by='A')
Output:
A B C
0 1 2 3
1 2 3 4
2 3 4 5
2 3 4 5
3 4 5 6
3 4 5 6
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With