I have the foll. dataframe:
df
A B 0 23 12 1 21 44 2 98 21 How do I remove the column names A and B from this dataframe? One way might be to write it into a csv file and then read it in specifying header=None. is there a way to do that without writing out to csv and re-reading?
You can set the header option to None to ignore header.
I think you cant remove column names, only reset them by range with shape:
print df.shape[1] 2 print range(df.shape[1]) [0, 1] df.columns = range(df.shape[1]) print df 0 1 0 23 12 1 21 44 2 98 21 This is same as using to_csv and read_csv:
print df.to_csv(header=None,index=False) 23,12 21,44 98,21 print pd.read_csv(io.StringIO(u""+df.to_csv(header=None,index=False)), header=None) 0 1 0 23 12 1 21 44 2 98 21 Next solution with skiprows:
print df.to_csv(index=False) A,B 23,12 21,44 98,21 print pd.read_csv(io.StringIO(u""+df.to_csv(index=False)), header=None, skiprows=1) 0 1 0 23 12 1 21 44 2 98 21
How to get rid of a header(first row) and an index(first column).
To write to CSV file:
df = pandas.DataFrame(your_array) df.to_csv('your_array.csv', header=False, index=False) To read from CSV file:
df = pandas.read_csv('your_array.csv') a = df.values If you want to read a CSV file that doesn't contain a header, pass additional parameter header:
df = pandas.read_csv('your_array.csv', header=None)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With