The following piece of code...
data = np.array([['','state','zip_code','collection_status'],
['42394','CA','92637-2854', 'NaN'],
['58955','IL','60654', 'NaN'],
['108365','MI','48021-1319', 'NaN'],
['109116','MI','48228', 'NaN'],
['110833','IL','60008-4227', 'NaN']])
print(pd.DataFrame(data=data[1:,1:],
index=data[1:,0],
columns=data[0,1:]))
... gives the following data frame:
state zip_code collection_status
42394 CA 92637-2854 NaN
58955 IL 60654 NaN
108365 MI 48021-1319 NaN
109116 MI 48228 NaN
110833 IL 60008-4227 NaN
The goal is to homogenise the "zip_code" column into a 5-digits format–i.e. I want to remove the last four last digits from zip_code when that particular data point has 9 digits instead of 5. BTW, zip_code's type is "object" type.
Any idea?
Use indexing with str only, thanks John Galt:
df['collection_status'] = df['zip_code'].str[:5]
print (df)
state zip_code collection_status
42394 CA 92637-2854 92637
58955 IL 60654 60654
108365 MI 48021-1319 48021
109116 MI 48228 48228
110833 IL 60008-4227 60008
If need add conditions use where or numpy.where:
df['collection_status'] = df['zip_code'].where(df['zip_code'].str.len() == 5,
df['zip_code'].str[:5])
print (df)
state zip_code collection_status
42394 CA 92637-2854 92637
58955 IL 60654 60654
108365 MI 48021-1319 48021
109116 MI 48228 48228
110833 IL 60008-4227 60008
df['collection_status'] = np.where(df['zip_code'].str.len() == 5,
df['zip_code'],
df['zip_code'].str[:5])
print (df)
state zip_code collection_status
42394 CA 92637-2854 92637
58955 IL 60654 60654
108365 MI 48021-1319 48021
109116 MI 48228 48228
110833 IL 60008-4227 60008
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With