Assume the following data:
structure(list(uuid = c("abc", "def", "hij"), Q1r1 = c(0L, 1L,
1L), Q1r2 = c(1L, 1L, 1L), Q1r3 = c(1L, 0L, 1L), Q2r1c1 = c(4L,
3L, 5L), Q2r1c2 = 2:4, Q2r1c3 = c(1L, 5L, 2L), Q2r2c1 = c(3L,
3L, 4L), Q2r2c2 = c(2L, 5L, 4L), Q2r2c3 = c(1L, 4L, 5L), Q3r1 = c(5L,
9L, 7L), Q3r2 = c(10L, 3L, 8L), Q3r3 = c(6L, 8L, 5L)), class = "data.frame", row.names = c(NA,
-3L))
which gives:
uuid Q1r1 Q1r2 Q1r3 Q2r1c1 Q2r1c2 Q2r1c3 Q2r2c1 Q2r2c2 Q2r2c3 Q3r1 Q3r2 Q3r3
1 abc 0 1 1 4 2 1 3 2 1 5 10 6
2 def 1 1 0 3 3 5 3 5 4 9 3 8
3 hij 1 1 1 5 4 2 4 4 5 7 8 5
Now assume that I want to pivot_longer the data for all Q1 and Q3 columns (where r1, r2 and r3 in these columns indicate the to-be-created rows).
This is relatively straightforward with:
dat %>%
pivot_longer(cols = c(starts_with("Q1"), starts_with("Q3")),
names_sep = "r",
names_to = c('.value', 'brand’))
which gives:
# A tibble: 9 x 10
uuid Q2r1c1 Q2r1c2 Q2r1c3 Q2r2c1 Q2r2c2 Q2r2c3 brand Q1 Q3
<chr> <int> <int> <int> <int> <int> <int> <chr> <int> <int>
1 abc 4 2 1 3 2 1 1 0 5
2 abc 4 2 1 3 2 1 2 1 10
3 abc 4 2 1 3 2 1 3 1 6
4 def 3 3 5 3 5 4 1 1 9
5 def 3 3 5 3 5 4 2 1 3
6 def 3 3 5 3 5 4 3 0 8
7 hij 5 4 2 4 4 5 1 1 7
8 hij 5 4 2 4 4 5 2 1 8
9 hij 5 4 2 4 4 5 3 1 5
Now, here's my question: would there also be a way to separate both pivotings from each other, i.e. first pivot_longer Q1 and then afterwards pivot_longer Q3?
The reason I'm asking is that alternatively I also want to pivot Q2 and Q3 (but in Q2 the row identifiers are c1, c2, c3 and I want to have two resulting columns Q2r1 and Q2r2 after pivoting_longer, whereas the row identifier is r1, r2, r3 for Q3, so the above simple code with names_sep and names_to doesn't work anymore). A colleague told me that in other software you can kind of concatenate the single pivot_longers so I'm wondering if the same is possible in R.
Note: I know how to do the pivoting for Q2 and Q3 in one round. I really just want to know if it is possible to split up the pivotings and do them one after the other.
The expected output from the first example where I pivot on Q1 and Q3 would be:
# A tibble: 9 x 10
uuid Q2r1c1 Q2r1c2 Q2r1c3 Q2r2c1 Q2r2c2 Q2r2c3 brand Q1 Q3
<chr> <int> <int> <int> <int> <int> <int> <chr> <int> <int>
1 abc 4 2 1 3 2 1 1 0 5
2 abc 4 2 1 3 2 1 2 1 10
3 abc 4 2 1 3 2 1 3 1 6
4 def 3 3 5 3 5 4 1 1 9
5 def 3 3 5 3 5 4 2 1 3
6 def 3 3 5 3 5 4 3 0 8
7 hij 5 4 2 4 4 5 1 1 7
8 hij 5 4 2 4 4 5 2 1 8
9 hij 5 4 2 4 4 5 3 1 5
The desired output from the second example where I want to pivot on Q2 and Q3 would be:
# A tibble: 9 x 8
uuid Q1r1 Q1r2 Q1r3 brand Q2r1 Q2r2 Q3
<chr> <int> <int> <int> <chr> <int> <int> <int>
1 abc 0 1 1 brand1 4 3 5
2 abc 0 1 1 brand2 2 2 10
3 abc 0 1 1 brand3 1 1 6
4 def 1 1 0 brand1 3 3 9
5 def 1 1 0 brand2 3 5 3
6 def 1 1 0 brand3 5 4 8
7 hij 1 1 1 brand1 5 4 7
8 hij 1 1 1 brand2 4 4 8
9 hij 1 1 1 brand3 2 5 5
Ok, after understanding the question better, the only answers I can think of are hackish. You mentioned one in the comments; here is another. This revolves around having flexible regex for selecting columns. Then it joins the dataframes together via Reduce() (or you can swap if for purrr::reduce() if you prefer). Also, note, this is performing the wide-to long multiple independent times (and combining) instead of doing it sequentially.
col_starts <- c("Q2", "Q3")
lapply(col_starts, function(x) {
df %>%
pivot_longer(matches(paste0("^", x)),
names_pattern = "(Q\\d.*)[rc](\\d)$",
names_to = c(".value", "brand")) %>%
select(uuid, brand:ncol(.), everything(), -matches(paste0("^", setdiff(col_starts, x), collapse = "|")))
}) %>% Reduce(function(x, y) left_join(x, y, by = intersect(names(x), names(y))), .)
# A tibble: 9 x 8
uuid brand Q2r1 Q2r2 Q1r1 Q1r2 Q1r3 Q3
<chr> <chr> <int> <int> <int> <int> <int> <int>
1 abc 1 4 3 0 1 1 5
2 abc 2 2 2 0 1 1 10
3 abc 3 1 1 0 1 1 6
4 def 1 3 3 1 1 0 9
5 def 2 3 5 1 1 0 3
6 def 3 5 4 1 1 0 8
7 hij 1 5 4 1 1 1 7
8 hij 2 4 4 1 1 1 8
9 hij 3 2 5 1 1 1 5
Here is a version that only keeps the uuid, brand and derived columns (it is a little easier to read imo)
lapply(c("Q2", "Q3"), function(x) {
df %>%
pivot_longer(matches(paste0("^", x)),
names_pattern = "(Q\\d.*)[rc](\\d)$",
names_to = c(".value", "brand")) %>%
select(uuid, brand, starts_with(x))
}) %>% Reduce(function(x, y) left_join(x, y, by = c("uuid", "brand")), .)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With