I have the following data frame.
id A B C 1 34353 917998 x 2 34973 980340 x 3 87365 498097 x 4 98309 486547 x 5 87699 475132 6 52734 4298894 7 8749267 4918066 x 8 89872 18103 9 589892 4818086 y 10 765 4063 y 11 32369 418165 y 12 206 2918137 13 554 3918072 14 1029 1918051 x 15 2349243 4918064
For each set of the empty rows e.g. 5,6 I want to create a new data frame. It is required to produce multiple data frames. As given below:
id A B 5 87699 475132 6 52734 4298894
id A B 8 89872 18103
id A B 12 206 2918137 13 554 3918072
id A B 15 2349243 4918064
isnull = df.C.isnull()
partitions = (isnull != isnull.shift()).cumsum()
gb = df[isnull].groupby(partitions)
At this point, we've accomplished the goal in creating a separate dataframe for each contiguous group of NaN in df.  They are accessible via the gb.get_group() method for each key in gb.groups
To verify, we will concatenate display.
keys = gb.groups.keys()
dfs = pd.concat([gb.get_group(g) for g in keys], keys=keys)
dfs

df
I used @Alberto Garcia-Raboso's reader
import io
import pandas as pd
# Create your sample dataframe
data = io.StringIO("""\
id       A        B        C   
1      34353    917998     x        
2      34973    980340     x      
3      87365    498097     x      
4      98309    486547     x      
5      87699    475132         
6      52734    4298894         
7      8749267  4918066    x    
8      89872    18103         
9      589892   4818086    y    
10     765      4063       y 
11     32369    418165     y
12     206      2918137    
13     554      3918072    
14     1029     1918051    x
15     2349243  4918064
""")
df = pd.read_csv(data, delim_whitespace=True)
Here's a slightly convoluted, probably not very fast solution using itertools.groupby (which famously lumps together sequences of consecutive like values).
from itertools import groupby
import io
import pandas as pd
# Create your sample dataframe
data = io.StringIO("""\
id       A        B        C   
1      34353    917998     x        
2      34973    980340     x      
3      87365    498097     x      
4      98309    486547     x      
5      87699    475132         
6      52734    4298894         
7      8749267  4918066    x    
8      89872    18103         
9      589892   4818086    y    
10     765      4063       y 
11     32369    418165     y
12     206      2918137    
13     554      3918072    
14     1029     1918051    x
15     2349243  4918064
""")
df = pd.read_csv(data, delim_whitespace=True)
# Create a boolean column that encodes which rows you want to keep
df['grouper'] = df['C'].notnull()
# Isolate the indices of the rows you want to keep, grouped by contiguity
groups = [list(map(lambda x: x[1]['id'], list(l)))
              for k, l in groupby(df.iterrows(), key=lambda x: x[1]['grouper'])
              if not k]
print(groups)     # => [[5, 6], [8], [12, 13], [15]]
# Gather the sub-dataframes whose indices match `groups`
dfs = []
for g in groups:
    dfs.append(df[['A', 'B']][df['id'].isin(g)])
# Inspect what you got
for df in dfs:
    print(df)
Output:
       A        B
4  87699   475132
5  52734  4298894
       A      B
7  89872  18103
      A        B
11  206  2918137
12  554  3918072
          A        B
14  2349243  4918064
try this:
x = df[pd.isnull(df.C)]
splitter = x.reset_index()[(x['id'].diff().fillna(0) > 1).reset_index(drop=True)].index
dfs = np.split(x, splitter)
for x in dfs:
    print(x, '\n')
Output:
In [264]: for x in l:
   .....:         print(x, '\n')
   .....:
   id      A        B    C
4   5  87699   475132  NaN
5   6  52734  4298894  NaN
   id      A      B    C
7   8  89872  18103  NaN
    id    A        B    C
11  12  206  2918137  NaN
12  13  554  3918072  NaN
    id        A        B    C
14  15  2349243  4918064  NaN
Explanation:
In [267]: x = df[pd.isnull(df.C)]
In [268]: x
Out[268]:
    id        A        B    C
4    5    87699   475132  NaN
5    6    52734  4298894  NaN
7    8    89872    18103  NaN
11  12      206  2918137  NaN
12  13      554  3918072  NaN
14  15  2349243  4918064  NaN
In [269]: x.ix[pd.isnull(df.C), 'id']
Out[269]:
4      5
5      6
7      8
11    12
12    13
14    15
Name: id, dtype: int64
In [270]: x['id'].diff().fillna(0)
Out[270]:
4     0.0
5     1.0
7     2.0
11    4.0
12    1.0
14    2.0
Name: id, dtype: float64
In [271]: x['id'].diff().fillna(0) > 1
Out[271]:
4     False
5     False
7      True
11     True
12    False
14     True
Name: id, dtype: bool
In [272]: (x['id'].diff().fillna(0) > 1).reset_index(drop=True)
Out[272]:
0    False
1    False
2     True
3     True
4    False
5     True
Name: id, dtype: bool
In [273]: x.reset_index()[x['id'].diff().fillna(0) > 1).reset_index(drop=True)]
Out[273]:
   index  id        A        B    C
2      7   8    89872    18103  NaN
3     11  12      206  2918137  NaN
5     14  15  2349243  4918064  NaN
In [274]: x.reset_index()[(x['id'].diff().fillna(0) > 1).reset_index(drop=True)].index
Out[274]: Int64Index([2, 3, 5], dtype='int64')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With