I have the following rows:
ID date value1 value2
1 16-01 1 2
1 16-02 3 4
2 16-01 5 6
2 16-02 7 8
pivot table:
pd.pivot_table(rows,index = ["ID"],values = ["value1","value2"],columns = ["date"]
prints:
value1 value2
16-01 16-02 16-01 16-02
ID
1 1 3 2 4
2 5 7 6 8
But I want:
16-01 16-02
value1 value2 value1 value2
ID
1 1 2 3 4
2 5 6 7 8
So how can I create all values per column instead of all columns per values?
Try using .swaplevel and .sortlevel methods
In [15]: pd.pivot_table(rows,index=["ID"],values=["value1","value2"],columns=["d
ate"]).swaplevel(0,1, axis=1).sortlevel(0, axis=1)
Out[15]:
date 16-01 16-02
value1 value2 value1 value2
ID
1 1 2 3 4
2 5 6 7 8
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With