Suppose I have a start and end dates like so:
start_d = datetime.date(2017, 7, 20)
end_d = datetime.date(2017, 9, 10)
I wish to obtain a Pandas DataFrame that looks like this:
Month    NumDays
2017-07  12
2017-08  31
2017-09  10
It shows the number of days in each month that is contained in my range.
So far I can generate the monthly series with pd.date_range(start_d, end_d, freq='MS').
You can use date_range by default day frequency first, then create Series and resample with size. Last convert to month period by to_period:
import datetime as dt    
start_d = dt.date(2017, 7, 20)
end_d = dt.date(2017, 9, 10)
s = pd.Series(index=pd.date_range(start_d, end_d), dtype='float64')
df = s.resample('MS').size().rename_axis('Month').reset_index(name='NumDays')
df['Month'] = df['Month'].dt.to_period('m')
print (df)
    Month  NumDays
0 2017-07       12
1 2017-08       31
2 2017-09       10
Thank you Zero for simplifying solution:
df = s.resample('MS').size().to_period('m').rename_axis('Month').reset_index(name='NumDays')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With