Since .ix has been deprecated as of Pandas 0.20, I wonder what is the proper way to mix lable-based, boolean-based and position-based indexing in Pandas? I need to assign values to a slice of dataframe that can be best referenced with label or boolean on the index and position on the columns. For example (using .loc as placeholder for the desired slicing method):
df.loc[df['a'] == 'x', -12:-1] = 3
obviously this doesn't work, with which I get:
TypeError: cannot do slice indexing on <class 'pandas.core.indexes.base.Index'> with these indexers [-12] of <class 'int'>
If I use .iloc, I get:
NotImplementedError: iLocation based boolean indexing on an integer type is not available
So how do I do it, without chaining, obviously to avoid chained assignment problem.
loc attribute is the primary access method. The following are valid inputs: A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
loc and iloc are interchangeable when labels are 0-based integers.
A multi-level index DataFrame is a type of DataFrame that contains multiple level or hierarchical indexing. You can create a MultiIndex (multi-level index) in the following ways.
Let's use .loc with the boolean indexing, and accessing the column labels via the dataframe column index with index slicing:
df.loc[df['a'] == 'x', df.columns[-12:-1]] = 3
maybe I should've explained clearer. I meant if your dataframe is indexed (with 0 to n), then you can use loc[] for a combination of number for rows and lable for column:
new_df = pd.DataFrame({'a':[1,2,3,4],'b':[5,6,7,8]})
new_df
Out[10]:
a b
0 1 5
1 2 6
2 3 7
3 4 8
new_df.loc[0,'a']
Out[11]:
1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With