I would like to filter out the frequencies that are less than n, in my case n is 2
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'bar',],'B' : ['yes', 'no', 'yes', 'no', 'no', 'yes','yes', 'no', 'no', 'no']})
df.groupby('A')['B'].value_counts()
A B
bar no 4
yes 1
foo yes 3
no 2
Name: B, dtype: int64
Ideally I would like the results in a dataframe showing the below(frequency of 1 is not excluded)
A B freq
bar no 4
foo yes 3
foo no 2
I have tried
df.groupby('A')['B'].filter(lambda x: len(x) > 1)
but this fails as apparently groupby returns a serie
You can just store the .value_counts() method output and then just filter it:
>>> counts = df.groupby('A')['B'].value_counts()
>>> counts[counts >= 2]
A B
bar no 4
foo yes 3
no 2
Name: B, dtype: int64
If you want to get your desired output, you can call .reset_index() method and rename the new column:
>>> counts[counts >= 2].reset_index(name='count')
A B count
0 bar no 4
1 foo yes 3
2 foo no 2
This can be down with one line with .loc
>>> df.groupby('A')['B'].value_counts().loc[lambda x: x > 1].reset_index(name='count')
A B count
0 bar no 4
1 foo yes 3
2 foo no 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With