Currently I'm working with some data from FRED that I pulled using quandl. The data I receive is in a dataframe.
It currently returns like so
DATE VALUE
1966-01-01 31.880
1966-02-01 32.080
1966-03-01 32.180
1966-04-01 32.280
... ...
2013-08-01 233.323
2013-09-01 233.632
2013-10-01 233.718
2013-11-01 234.121
But I would like to reorganize for displaying as:
Jan Feb Mar Apr...
1966 31.880 32.080 32.180 32.280
...
2013 233.323 233.632 233.718 234.121
Edit: I thought this would be useful.
DatetimeIndex(['1966-01-01', '1966-02-01', '1966-03-01', '1966-04-01',
'1966-05-01', '1966-06-01', '1966-07-01', '1966-08-01',
'1966-09-01', '1966-10-01',
...
'2015-04-01', '2015-05-01', '2015-06-01', '2015-07-01',
'2015-08-01', '2015-09-01', '2015-10-01', '2015-11-01',
'2015-12-01', '2016-01-01'],
dtype='datetime64[ns]', name=u'DATE', length=601, freq=None)
Index([u'VALUE'], dtype='object')
You can use pandas.crosstab:
df.DATE = pd.to_datetime(df.DATE) # optional if the DATE column is already datetime type
pd.crosstab(df.DATE.dt.year,
df.DATE.dt.strftime("%b"),
df.VALUE,
aggfunc="sum",
rownames=["Year"],
colnames=["Month"])

Update: In case you have Date as index:
pd.crosstab(df.index.year,
df.index.strftime("%b"),
df.VALUE,
aggfunc="sum",
rownames=["Year"],
colnames=["Month"])
I like to construct this with pd.Series and unstack
pd.Series(
df.VALUE.values,
[df.DATE.dt.year.values,
df.DATE.dt.strftime("%b").values]
).unstack()
Apr Aug Feb Jan Mar Nov Oct Sep
1966 32.28 NaN 32.08 31.88 32.18 NaN NaN NaN
2013 NaN 233.323 NaN NaN NaN 234.121 233.718 233.632
Or equivalently with
df.set_index(
[df.DATE.dt.year,
df.DATE.dt.strftime('%b')],
).VALUE.rename_axis([None, None]).unstack()
naive timing

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With