I have a dataframe resultstatsDF
resultstatsDF = DataFrame({'a': [1,2,3,4,5]})
resultstatsDF['file'] = 'asdf'
resultstatsDF.dtypes
a int64
file object
dtype: object
with the object column file that I would like to cast to string:
I tried
resultstatsDF = resultstatsDF.astype({'file': str})
resultstatsDF['file'] = resultstatsDF['file'].astype(str)
resultstatsDF['file'] = resultstatsDF['file'].to_string
resultstatsDF['file'] = resultstatsDF.file.apply(str)
resultstatsDF['file'] = resultstatsDF['file'].apply(str)
but whatever I do, when I check with
resultstatsDF.dtypes
the column file stays to be of tpye object.
dtype of string, dict, list is always object, for testing type need select some value of column e.g. by iat:
type(resultstatsDF['file'].iat[0])
Sample:
resultstatsDF = pd.DataFrame({'file':['a','d','f']})
print (resultstatsDF)
file
0 a
1 d
2 f
print (type(resultstatsDF['file'].iloc[0]))
<class 'str'>
print (resultstatsDF['file'].apply(type))
0 <class 'str'>
1 <class 'str'>
2 <class 'str'>
Name: file, dtype: object
Sample:
df = pd.DataFrame({'strings':['a','d','f'],
'dicts':[{'a':4}, {'c':8}, {'e':9}],
'lists':[[4,8],[7,8],[3]],
'tuples':[(4,8),(7,8),(3,)],
'sets':[set([1,8]), set([7,3]), set([0,1])] })
print (df)
dicts lists sets strings tuples
0 {'a': 4} [4, 8] {8, 1} a (4, 8)
1 {'c': 8} [7, 8] {3, 7} d (7, 8)
2 {'e': 9} [3] {0, 1} f (3,)
All values have same dtypes:
print (df.dtypes)
dicts object
lists object
sets object
strings object
tuples object
dtype: object
But type is different, if need check it by loop:
for col in df:
print (df[col].apply(type))
0 <class 'dict'>
1 <class 'dict'>
2 <class 'dict'>
Name: dicts, dtype: object
0 <class 'list'>
1 <class 'list'>
2 <class 'list'>
Name: lists, dtype: object
0 <class 'set'>
1 <class 'set'>
2 <class 'set'>
Name: sets, dtype: object
0 <class 'str'>
1 <class 'str'>
2 <class 'str'>
Name: strings, dtype: object
0 <class 'tuple'>
1 <class 'tuple'>
2 <class 'tuple'>
Name: tuples, dtype: object
Or first value of columns:
print (type(df['strings'].iat[0]))
<class 'str'>
print (type(df['dicts'].iat[0]))
<class 'dict'>
print (type(df['lists'].iat[0]))
<class 'list'>
print (type(df['tuples'].iat[0]))
<class 'tuple'>
print (type(df['sets'].iat[0]))
<class 'set'>
With boolean indexing if possible mixed column (then some pandas function can be broken) is possible filter by type:
df = pd.DataFrame({'mixed':['3', 5, 9,'2']})
print (df)
mixed
0 3
1 5
2 9
3 2
print (df.dtypes)
mixed object
dtype: object
for col in df:
print (df[col].apply(type))
0 <class 'str'>
1 <class 'int'>
2 <class 'int'>
3 <class 'str'>
Name: mixed, dtype: object
#python 3 - string
#python 2 - basestring
mask = df['mixed'].apply(lambda x: isinstance(x,str))
print (mask)
0 True
1 False
2 False
3 True
Name: mixed, dtype: bool
df = df[mask]
print (df)
mixed
0 3
3 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With