I created a model to recognize license plates. It is this one:
def create_model(input_shape = (224, 224, 3)):
input_img = Input(shape=input_shape)
model = efnB0_model (input_img)
model = GlobalAveragePooling2D(name='avg_pool')(model)
model = Dropout(0.2)(model)
backbone = model
branches = []
for i in range(7):
branches.append(backbone)
branches[i] = Dense(360, name="branch_"+str(i)+"_Dense_360")(branches[i])
branches[i] = BatchNormalization()(branches[i])
branches[i] = Activation("relu") (branches[i])
branches[i] = Dropout(0.2)(branches[i])
branches[i] = Dense(35, activation = "softmax", name="branch_"+str(i)+"_output")(branches[i])
output = Concatenate(axis=1)(branches)
output = Reshape((7, 35))(output)
model = Model(input_img, output)
return model
I used this DataGenerator:
import tensorflow.keras as keras
from skimage.io import imread
from skimage.transform import resize
import numpy as np
import math
class DataGenerator(Sequence):
def __init__(self, x_set, y_set, batch_size):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
def __len__(self):
return math.ceil(len(self.x) / self.batch_size)
def __getitem__(self, idx):
batch_x = self.x[idx*self.batch_size : (idx + 1)*self.batch_size]
batch_x = np.array([resize(imread(file_name), (224, 224)) for file_name in batch_x])
batch_x = batch_x * 1./255
batch_y = self.y[idx*self.batch_size : (idx + 1)*self.batch_size]
batch_y = np.array(batch_y)
return batch_x, batch_y
Therefore, I onehot-encoded every license plate (length 7 characters and 35 possible character for every position using this code:
#One Hot Encoding der Labels, Zielarray hat eine Shape von (7,35)
from numpy import argmax
# define input string
def my_onehot_encoded(label):
# define universe of possible input values
characters = '0123456789ABCDEFGHIJKLMNPQRSTUVWXYZ'
# define a mapping of chars to integers
char_to_int = dict((c, i) for i, c in enumerate(characters))
int_to_char = dict((i, c) for i, c in enumerate(characters))
# integer encode input data
integer_encoded = [char_to_int[char] for char in label]
# one hot encode
onehot_encoded = list()
for value in integer_encoded:
character = [0 for _ in range(len(characters))]
character[value] = 1
onehot_encoded.append(character)
return onehot_encoded
For the license with label "7CT2498" I get the following onehot-encoded output:
[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
Now, when running the model I created above for 10 epochs on 10.000 training data and 3.000 validation data I get a training accuracy of 0.9969 and a validation accuracy of 0.9798, so not too bad.
But now I tried to predict a license plate with this model (the image is from the same dataset as my training and validation data is).
I used this code:
model = keras.models.load_model(
"/path/to/model.h5", compile=True)
opt = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=["accuracy"])
img = cv2.imread('/path/to/image.png')
img = cv2.resize(img,(224,224))
img = np.reshape(img,[1,224,224,3])
classes = model.predict(img)
print(classes)
And I do only get one correctly predicted class. Is there something wrong with my code?
After looking at the code you sent me, it seems that you were using skimage
for the preprocessing when fitting the model and opencv
when doing the prediction. After using the same preprocessing code, it works fine:
from skimage.io import imread
from skimage.transform import resize
import numpy as np
import math
img = imread('path/to/image')
img = resize(img,(224,224))
img = img*1./255
img = np.reshape(img,[1,224,224,3])
classes = model.predict(img)
print(classes)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With