I am working on a kernel module and I need to compare two buffers to find out if they are equivalent. I am using the memcmp function defined in the Linux kernel to do so. My first buffer is like this:
cache_buffer = (unsigned char *)vmalloc(4097);
cache_buffer[4096] = '/0';
The second buffer is from a page using the page_address() function.
page = bio_page(bio);
kmap(page);
write_buffer = (char *)page_address(page);
kunmap(page);
I have printed the contents of both buffers before hand and not only to they print correctly, but they also have the same content. So next, I do this:
result = memcmp(write_buffer, cache_buffer, 2048); // only comparing up to 2048 positions
This causes the kernel to freeze up and I cannot figure out why. I checked the implementation of memcmp and saw nothing that would cause the freeze. Can anyone suggest a cause?
Here is the memcmp implementation:
int memcmp(const void *cs, const void *ct, size_t count)
{
const unsigned char *su1, *su2;
int res = 0;
for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--)
if ((res = *su1 - *su2) != 0)
break;
return res;
}
EDIT: The function causing the freeze is memcmp. When I commented it out, everything worked. Also, when I did I memcmp as follows
memcmp(write_buffer, write_buffer, 2048); //comparing two write_buffers
Everything worked as well. Only when I throw the cache_buffer into the mix is when I get the error. Also, above is a simplification of my actual code. Here is the entire function:
static int compare_data(sector_t location, struct bio * bio, struct cache_c * dmc)
{
struct dm_io_region where;
unsigned long bits;
int segno;
struct bio_vec * bvec;
struct page * page;
unsigned char * cache_data;
char * temp_data;
char * write_data;
int result, length, i;
cache_data = (unsigned char *)vmalloc((dmc->block_size * 512) + 1);
where.bdev = dmc->cache_dev->bdev;
where.count = dmc->block_size;
where.sector = location << dmc->block_shift;
printk(KERN_DEBUG "place: %llu\n", where.sector);
dm_io_sync_vm(1, &where, READ, cache_data, &bits, dmc);
length = 0;
bio_for_each_segment(bvec, bio, segno)
{
if(segno == 0)
{
page = bio_page(bio);
kmap(page);
write_data = (char *)page_address(page);
//kunmap(page);
length += bvec->bv_len;
}
else
{
page = bio_page(bio);
kmap(page);
temp_data = strcat(write_data, (char *)page_address(page));
//kunmap(page);
write_data = temp_data;
length += bvec->bv_len;
}
}
printk(KERN_INFO "length: %u\n", length);
cache_data[dmc->block_size * 512] = '\0';
for(i = 0; i < 2048; i++)
{
printk("%c", write_data[i]);
}
printk("\n");
for(i = 0; i < 2048; i++)
{
printk("%c", cache_data[i]);
}
printk("\n");
result = memcmp(write_data, cache_data, length);
return result;
}
EDIT #2: Sorry guys. The problem was not memcmp. It was the result of memcmp. When ever it returned a positive or negative number, the function that called my function would play with some pointers, one of which was uninitialized. I don't know why I didn't realize it before. Thanks for trying to help though!
I'm no kernel expert, but I would assume you need to keep this memory mapped while doing the comparison? In other words, don't call kunmap until after the memcmp is complete. I would presume that calling it before will result in write_buffer pointing to a page which is no longer mapped.
Taking your code in the other question, here is a rough attempt at incremental. Still needs some cleanup, I'm sure:
static int compare_data(sector_t location, struct bio * bio, struct cache_c * dmc)
{
struct dm_io_region where;
unsigned long bits;
int segno;
struct bio_vec * bvec;
struct page * page;
unsigned char * cache_data;
char * temp_data;
char * write_data;
int length, i;
int result = 0;
size_t position = 0;
size_t max_size = (dmc->block_size * 512) + 1;
cache_data = (unsigned char *)vmalloc(max_size);
where.bdev = dmc->cache_dev->bdev;
where.count = dmc->block_size;
where.sector = location << dmc->block_shift;
printk(KERN_DEBUG "place: %llu\n", where.sector);
dm_io_sync_vm(1, &where, READ, cache_data, &bits, dmc);
bio_for_each_segment(bvec, bio, segno)
{
// Map the page into memory
page = bio_page(bio);
write_data = (char *)kmap(page);
length = bvec->bv_len;
// Make sure we don't go past the end
if(position >= max_size)
break;
if(position + length > max_size)
length = max_size - position;
// Compare the data
result = memcmp(write_data, cache_data + position, length);
position += length;
kunmap(page);
// If the memory is not equal, bail out now and return the result
if(result != 0)
break;
}
cache_data[dmc->block_size * 512] = '\0';
return result;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With